A Space Walking Robot Could Build a Giant Telescope in Space

Artist impression of the James Webb Space Telescope. Its design and construction were made more complicated and expensive because it had to fit into the nosecone of the rocket that launched it. Assembling telescopes in space could be an improvement. Image Credit: ESA.

The Hubble Space Telescope was carried to space inside the space shuttle Discovery and then released into low-Earth orbit. The James Webb Space Telescope was squeezed inside the nose cone of an Ariane 5 rocket and then launched. It deployed its mirror and shade on its way to its home at the Sun-Earth L2 Lagrange point.

However, the ISS was assembled in space with components launched at different times. Could it be a model for building future space telescopes and other space facilities?

Continue reading “A Space Walking Robot Could Build a Giant Telescope in Space”

Multimode Propulsion Could Revolutionize How We Launch Things to Space

An illustration of the Gateway’s Power and Propulsion Element and Habitation and Logistics Outpost in orbit around the Moon. Credits: NASA

In a few years, as part of the Artemis Program, NASA will send the “first woman and first person of color” to the lunar surface. This will be the first time astronauts have set foot on the Moon since the Apollo 17 mission in 1972. This will be followed by the creation of permanent infrastructure that will allow for regular missions to the surface (once a year) and a “sustained program of lunar exploration and development.” This will require spacecraft making regular trips between the Earth and Moon to deliver crews, vehicles, and payloads.

In a recent NASA-supported study, a team of researchers at the University of Illinois Urbana-Champaign investigated a new method of sending spacecraft to the Moon. It is known as “multimode propulsion,” a method that integrates a high-thrust chemical mode and a low-thrust electric mode – while using the same propellant. This system has several advantages over other forms of propulsion, not the least of which include being lighter and more cost-effective. With a little luck, NASA could rely on multimode propulsion-equipped spacecraft to achieve many of its Artemis objectives.

Continue reading “Multimode Propulsion Could Revolutionize How We Launch Things to Space”

The Artemis Astronauts are Getting New Spacesuits With Some Help From Prada

This is a mock-up of Axiom Space's Axiom Extravehicular Mobility Unit (AxEMU) spacesuit that will be used for NASA’s Artemis III mission. They partnered with Prada to design the suit. Image Credit: Axiom Space/Prada

The Artemis program involves impressive technological advancements in robotics, communications, spacecraft, and advanced habitats, all of which are clearly necessary for such an ambitious endeavour. But the mission also requires updated spacesuits. Those spacesuits are critical to mission success, and the Italian luxury fashion house Prada is adding their knowledge and experience to the design.

Continue reading “The Artemis Astronauts are Getting New Spacesuits With Some Help From Prada”

Metal Part 3D Printed in Space for the First Time

The ESA has created the first 3D-printed metal component in space. Credit: ESA/NASA

Additive manufacturing, also known as 3D printing, has had a profound impact on the way we do business. There is scarcely any industry that has not been affected by the adoption of this technology, and that includes spaceflight. Companies like SpaceX, Rocket Lab, Aerojet Rocketdyne, and Relativity Space have all turned to 3D printing to manufacture engines, components, and entire rockets. NASA has also 3D-printed an aluminum thrust chamber for a rocket engine and an aluminum rocket nozzle, while the ESA fashioned a 3D-printed steel floor prototype for a future Lunar Habitat.

Similarly, the ESA and NASA have been experimenting with 3D printing in space, known as in-space manufacturing (ISM). Recently, the ESA achieved a major milestone when their Metal 3D Printer aboard the International Space Station (ISS) produced the first metal part ever created in space. This technology is poised to revolutionize operations in Low-Earth Orbit (LEO) by ensuring that replacement parts can be manufactured in situ rather than relying on resupply missions. This process will reduce operational costs and enable long-duration missions to the Moon, Mars, and beyond!

Continue reading “Metal Part 3D Printed in Space for the First Time”

There are Plenty of Uses for Powerful Lasers in Space. But Where Should We Put Them?

Recently, Astronomers spotted three near-Earth asteroids (NEAs) hiding in the glare of the Sun. These NEAs are part of an elusive population that lurks inside the orbits of Earth and Venus. One of the asteroids is the largest object that is potentially hazardous to Earth to be discovered in the last eight years. Could we use space lasers to protect Earth from these hazards? Image Credit: DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA/J. da Silva/Spaceengine

Is it time for space lasers yet? Almost.

As time passes, ideas that were once confined to the realm of science fiction become more realistic. It’s true of things like using robots to explore other worlds. Space lasers are a well-used element in science fiction, and we’re approaching the time when they could become a reality.

Where would we put them, and what could we use them for?

Continue reading “There are Plenty of Uses for Powerful Lasers in Space. But Where Should We Put Them?”

Astronomers Have Tools That Can Help Detect Deepfake Images

This AI-generated image of the Pope in a puffer jacket went viral in 2023 and many were fooled into thinking it was real. It was generated with the AI tool Midjourney and was posted on Reddit by a user whose account is now gone. On the right is a Hubble Space Telescope image of the Antennae Galaxies. Image Credit: Midjourney/NASA/ESA

There’s a burgeoning arms race between Artificial Intelligence (AI) deepfake images and the methods used to detect them. The latest advancement on the detection side comes from astronomy. The intricate methods used to dissect and understand light in astronomical images can be brought to bear on deepfakes.

Continue reading “Astronomers Have Tools That Can Help Detect Deepfake Images”

The Space Station Now Has Blisteringly Fast Internet

A collage of the pet photos sent over laser links from Earth to LCRD (Laser Communications Relay Demonstration) to ILLUMA-T (Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal) on the space station. Credit: NASA/Dave Ryan
A collage of the pet photos sent over laser links from Earth to LCRD (Laser Communications Relay Demonstration) to ILLUMA-T (Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal) on the space station. Credit: NASA/Dave Ryan

NASA’s Space Communications and Navigation programme (SCaN) has demonstrated the first two way end-to-end laser relay system, deployed through an innovative network. To test SCaN, they sent data to the International Space Station at the impressive speed of 1.2 gigabits per second. Using bandwidth that would normally be reserved for more important communications, the chosen message for the test was a set of adorable images and videos featuring the pets of NASA astronauts and staffers.

Continue reading “The Space Station Now Has Blisteringly Fast Internet”

Making Rocket Fuel Out of Lunar Regolith

An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018
An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018

In the coming years, NASA and other space agencies plan to extend the reach of human exploration. This will include creating infrastructure on the Moon that will allow for crewed missions on a regular basis. This infrastructure will allow NASA and its international partners to make the next great leap by sending crewed missions to Mars (by 2039 at the earliest). Having missions operate this far from Earth for extended periods means that opportunities for resupply will be few and far between. As a result, crews will need to rely on In-Situ Resource Utilization (ISRU), where local resources are leveraged to provide for basic needs.

In addition to air, water, and building materials, the ability to create propellant from local resources is essential. According to current mission architectures, this would consist of harvesting water ice in the polar regions and breaking it down to create liquid oxygen (LOX) and liquid hydrogen (LH2). However, according to a new study led by engineers from McGill University, rocket propellant could be fashioned from lunar regolith as well. Their findings could present new opportunities for future missions to the Moon, which would no longer be restricted to the polar regions.

Continue reading “Making Rocket Fuel Out of Lunar Regolith”

Could We Put Data Centers In Space?

Artificial intelligence has taken the world by storm lately. It also requires loads of band-end computing capability to do the near-miraculous things that it does. So far, that “compute,” as it’s known in the tech industry, has been based entirely on the ground. But is there an economic reason to do it in space? Some people seem to think so, as there has been a growing interest in space-based data centers. Let’s take a look at why.

Continue reading “Could We Put Data Centers In Space?”

A New Way to Survive the Harsh Lunar Night

Heat-Switch Device Boosts Lunar Rover Longevity in Harsh Moon Climate.
Heat-Switch Device Boosts Lunar Rover Longevity in Harsh Moon Climate. Credit: Shinichiro Kinoshita, Masahito Nishikawara

The Moon is a tough place to survive, and not just for humans. The wild temperature extremes between day and night make it extremely difficult to build reliable machinery that will continue to operate. But an engineering team from Nagoya University in Japan have developed an energy-efficient new way to control Loop Heat Pipes (LHP) to safely cool lunar rovers. This will extend their lifespan, keeping them running for extended lunar exploration missions.

Continue reading “A New Way to Survive the Harsh Lunar Night”