Earth and Mars were very similar in their youth. Four billion years ago, both planets had vast, warm seas. But while Earth retained its oceans, the waters of Mars evaporated away or froze beneath its dusty surface. Exactly why these two worlds took such divergent paths is unclear, though it may lie in the origins of their water.
Continue reading “There was Hot Water on Mars 4.45 Billion Years Ago”New Supercomputer Simulation Explains How Mars Got Its Moons
Earth and Mars are the only two rocky planets in the solar system to have moons. Based on lunar rock samples and computer simulations, we are fairly certain that our Moon is the result of an early collision between Earth and a Mars-sized protoplanet called Theia. Since we don’t have rock samples from either Martian moon, the origins of Deimos and Phobos are less clear. There are two popular models, but new computer simulations point to a compromise solution.
Continue reading “New Supercomputer Simulation Explains How Mars Got Its Moons”What a Misplaced Meteorite Told Us About Mars
11 million years ago, Mars was a frigid, dry, dead world, just like it is now. Something slammed into the unfortunate planet, sending debris into space. A piece of that debris made it to Earth, found its way into a drawer at Purdue University, and then was subsequently forgotten about.
Until 1931, when scientists studied and realized it came directly from Mars. What has it told them about the red planet?
Continue reading “What a Misplaced Meteorite Told Us About Mars”The New Mars Landing Approach: How We’ll Land Large Payloads on the Red Planet
Back in 2007, I talked with Rob Manning, engineer extraordinaire at the Jet Propulsion Laboratory, and he told me something shocking. Even though he had successfully led the entry, descent, and landing (EDL) teams for three Mars rover missions, he said the prospect of landing a human mission on the Red Planet might be impossible.
But now, after nearly 20 years of work and research — as well as more successful Mars rover landings — Manning says the outlook has vastly improved.
“We’ve made huge progress since 2007,” Manning told me when we chatted a few weeks ago in 2024. “It’s interesting how its evolved, but the fundamental challenges we had in 2007 haven’t gone away, they’ve just morphed.”
Continue reading “The New Mars Landing Approach: How We’ll Land Large Payloads on the Red Planet”What’s Behind the Martian Methane Mystery?
The seasonal variations of methane in the Martian atmosphere is an intriguing clue that there might be life hiding under the surface of the red planet. But we won’t know for sure until we go digging for it.
Continue reading “What’s Behind the Martian Methane Mystery?”How Life Could Live Under the Ice on Mars
Mars has been a fascination to us for centuries. Early observations falsely gave impressions of an intelligent civilisation but early visiting probes revealed a stark, desolate world. Underneath the surface is a few metres of water ice and a recent study by NASA suggests sunlight could reach the layer. If it does, it may allow photosynthesis in the meltwater. On Earth this actually happened and biologists have found similar pools teeming with life.
Continue reading “How Life Could Live Under the Ice on Mars”Scaling Propellant Production on Mars is Hard
Putting humans on Mars has been one of NASA’s driving missions for years, but they are still in the early stages of deciding what exactly that mission architecture will look like. One major factor is where to get the propellant to send the astronauts back to Earth. Advocates of space exploration often suggest harvesting the necessary propellant from Mars itself – some materials can be used to create liquid oxygen and methane, two commonly used propellants. To support this effort, a group from NASA’s COMPASS team detailed several scenarios of the infrastructure and technologies it would take to make an in-situ resource utilization (ISRU) system that could provide enough propellant to get astronauts back to a Mars orbit where they could meet up with an Earth return vehicle. However, there are significant challenges to implementing such a system, and they must be addressed before the 8-9-year process of getting the system up and running can begin.
Continue reading “Scaling Propellant Production on Mars is Hard”Flowing Martian Water was Protected by Sheets of Carbon Dioxide
Mars’ ancient climate is one of our Solar System’s most perplexing mysteries. The planet was once wet and warm; now it’s dry and cold. Whatever befell the planet, it didn’t happen all at once.
New research shows that on ancient cold Mars, sheets of frozen carbon dioxide allowed rivers to flow and a sea the size of the Mediterranean to exist.
Continue reading “Flowing Martian Water was Protected by Sheets of Carbon Dioxide”Scientists Have Figured out why Martian Soil is so Crusty
On November 26th, 2018, NASA’s Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) mission landed on Mars. This was a major milestone in Mars exploration since it was the first time a research station had been deployed to the surface to probe the planet’s interior. One of the most important instruments InSight would use to do this was the Heat Flow and Physical Properties Package (HP3) developed by the German Aerospace Center (DLR). Also known as the Martian Mole, this instrument measured the heat flow from deep inside the planet for four years.
The HP3 was designed to dig up to five meters (~16.5 ft) into the surface to sense heat deeper in Mars’ interior. Unfortunately, the Mole struggled to burrow itself and eventually got just beneath the surface, which was a surprise to scientists. Nevertheless, the Mole gathered considerable data on the daily and seasonal fluctuations below the surface. Analysis of this data by a team from the German Aerospace Center (DLR) has yielded new insight into why Martian soil is so “crusty.” According to their findings, temperatures in the top 40 cm (~16 inches) of the Martian surface lead to the formation of salt films that harden the soil.
Continue reading “Scientists Have Figured out why Martian Soil is so Crusty”China Releases its First Roadmap for Space Science and Exploration Through 2050.
China’s space program has advanced considerably since the turn of the century. In addition to developing heavy-launch vehicles like the Long March 5 and building a modular space station in orbit, China has also embarked on an ambitious program of lunar exploration (Chang’e) – which has launched six robotic missions to explore the Moon’s surface since 2007. These missions are paving the way for crewed missions to the Moon by 2030 and creating a permanent habitat around the Moon’s southern polar region – the International Lunar Research Station (ILRS).
They also plan to send crewed missions to Mars by 2033, which will culminate in the creation of a permanent base there too. Earlier today, the Chinese Academy of Sciences (CAS), the China National Space Administration (CNSA), and the China Manned Space Agency (CMSE) jointly released the country’s first long-term scheme for space science and exploration. Titled “National Medium—and Long-Term Development Plan for Space Science (2024-2050),” this plan elaborated on the basic principles, development goals, and roadmap for the country’s space science and exploration through 2050.
Continue reading “China Releases its First Roadmap for Space Science and Exploration Through 2050.”