Viking: Remembering Humanity’s First Successful Mission On Mars Surface

Taken by the Viking 1 lander shortly after it touched down on Mars, this image is the first photograph ever taken from the surface of Mars. It was taken on July 20, 1976. The primary objectives of the Viking mission, which was composed of two spacecraft, were to obtain high-resolution images of the Martian surface, characterize the structure and composition of the atmosphere and surface and search for evidence of life on Mars. Credit: NASA
Taken by the Viking 1 lander shortly after it touched down on Mars, this image is the first photograph ever taken from the surface of Mars. It was taken on July 20, 1976. The primary objectives of the Viking mission, which was composed of two spacecraft, were to obtain high-resolution images of the Martian surface, characterize the structure and composition of the atmosphere and surface and search for evidence of life on Mars. Credit: NASA
Taken by the Viking 1 lander shortly after it touched down on Mars, this image is the first photograph ever taken from the surface of Mars. The primary objectives of the Viking mission was to obtain high-resolution images of the Martian surface, characterize the structure and composition of the atmosphere and surface and search for evidence of life on Mars. Credit: NASA

July 20. Sound like a familiar date? If you guessed that’s when we first set foot on the Moon 47 years ago, way to go! But it’s also the 40th anniversary of Viking 1 lander, the first American probe to successfully land on Mars.

The Russians got there first on December 2, 1971 when their Mars 3 probe touched down in the Mare Sirenum region. But transmissions stopped just 14.5 seconds later, only enough time for the crippled lander to send a partial and garbled photo that unfortunately showed no identifiable features.

The late, great Carl Sagan stands next to a model of the Viking lander. Credit: NASA
The late, great Carl Sagan stands next to a model of the Viking lander. Credit: NASA

Viking 1 touched down on July 20, 1976 in Chryse Planitia, a smooth, circular plain in Mars’ northern equatorial region and operated for six years, far beyond the original 90 day mission. Its twin, Viking 2, landed about 4,000 miles (6,400 km) away in the vast northern plain called Utopia Planitia several weeks later on September 3. Both were packaged inside orbiters that took pictures of the landing sites before dispatching the probes.

The first color photo taken of the Martian surface by the Viking 1 lander on July 21, 1976. The rock strewn landscape is a familiar one seen in photos taken by many landers since. Credit: NASA
The first color photo taken of the Martian surface by the Viking 1 lander on July 21, 1976. The rock strewn landscape is a familiar one seen in photos taken by many landers since. Credit: NASA

Viking 1 was originally slated to land on July 4th to commemorate the 200th year of the founding of the United States. Some of you may remember the bicentennial celebrations underway at the time. Earlier photos taken by Mariner 9 helped mission controllers pick what they thought was a safe landing site, but when the Viking 1 orbiter arrived and took a closer look, NASA deemed it too bouldery for a safe landing, so they delayed the the probe’s arrival until a safer site could be chosen. Hence the July 20th touchdown date.

My recollection at the time was that that particular date was picked to coincide with the first lunar landing.

I’ll never forget the first photo transmitted from the surface. I had started working at the News Gazette in Champaign, Ill. earlier that year in the photo department. On July 20 I joined the wire editor, a kindly. older gent named Raleigh, at the AP Photofax machine and watched the black and white image creep line-by-line from the machine. Still damp with ink, I lifted the sodden sheet into my hands, totally absorbed. Two things stood out: how incredibly sharp the picture was and ALL THOSE ROCKS!  Mars looked so different from the Moon.

The Viking 1 Lander sampling arm created a number of deep trenches as part of the surface composition and biology experiments on Mars. The digging tool on the sampling arm (at lower center) could scoop up samples of material and deposit them into the appropriate experiment. Some holes were dug deeper to study soil which was not affected by solar radiation and weathering. The trenches in this ESE looking image are in the "Sandy Flats" area of the landing site at Chryse Planitia. Credit: NASA
The Viking 1 Lander sampling arm created a number of deep trenches as part of the surface composition and biology experiments on Mars. The digging tool on the sampling arm (at lower center) could scoop up samples of material and deposit them into the appropriate experiment. Some holes were dug deeper to study soil which was not affected by solar radiation and weathering. Credit: NASA

One day later, Viking 1 returned the first color photo from the surface and continued to operate, taking photos and doing science for 2,307 days until November 11, 1982, a record not broken until May 2010 by NASA’s Opportunity rover. It would have continued humming along for who knows how much longer were it not for a faulty command sent by mission control that resulted in a permanent loss of contact.

The first Mars panorama taken in Chryse Plantia by Viking 1. Credit: NASA
The first Mars panorama taken in Chryse Plantia by Viking 1. Click to supersize. Credit: NASA

Viking 2 soldiered on until its batteries failed on April 11, 1980. Both landers characterized the Martian weather and radiation environment, scooped up soil samples and measured their elemental composition and send back lots of photos including the first Martian panoramas.

Each lander carried three instruments designed to look for chemical or biological signs of living or once-living organisms. Soil samples scooped up by the landers’ sample arms were delivered to three experiments in hopes of detecting organic compounds and gases either consumed or released by potential microbes when they were treated with nutrient solutions. The results from both landers were similar: neither suite of experiments found any organic (carbon-containing) compounds nor any definitive signs of Mars bugs.

The first color picture taken by Viking 2 on the Martian surface shows a rocky reddish surface much like that seen by Viking 1 more than 4000 miles away. Credit: NASA
The first color picture taken by Viking 2 on the Martian surface shows a rocky reddish surface much like that seen by Viking 1 more than 4,000 miles away. Credit: NASA

Not that there wasn’t some excitement. The Labeled Release experiment (LC) actually did give positive results. A nutrient solution was added to a sample of Martian soil. If it contained microbes, they would take in the nutrients and release gases. Great gobs of gas were quickly released! As if the putative Martian microbes only needed a jigger of  NASA’s chicken soup to find their strength. But the complete absence of organics in the soil made scientists doubtful that life was the cause.  Instead it was thought that some inorganic chemical reaction must be behind the release. Negative results from the other two experiments reinforced their pessimism.

Frost on Utopia Planitia photographed by Viking 2. Credit NASA
Frost on Utopia Planitia photographed by Viking 2. Click to visit NASA’s Viking image archive (not to miss!) Credit NASA

Fast forward to 2008 when the Phoenix lander detected strongly oxidizing perchlorates originating from the interaction of strong ultraviolet light from the Sun with soils on the planet’s surface. Since Mars lacks an ozone layer, perchlorates may not only be common but also responsible for destroying much of Mars’ erstwhile organic bounty. Other scientists have reexamined the Viking LC data in recent years and concluded just the opposite, that the gas release points to life.


A fun, “period” movie about the Viking Mission to Mars

Seems to me it’s high time we should send a new suite of experiments designed to find life. Then again, maybe we won’t have to. The Mars 202o Mission will cache Martian rocks for later pickup, so we can bring pieces of Mars back to Earth and perform experiments to our heart’s content.

Why Don’t We Search for Different Life?

Why Don’t We Search for Different Life?

If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don’t we look for the stuff that’s really different?

In the immortal words of Arthur C. Clarke, “Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying.”

I’m seeking venture capital for a Universal buffet chain, and I wondering if I need to include whatever the tentacle equivalent of forks is on my operating budget. If there isn’t any life, I’m going to need to stop watching so much science fiction and get on with helping humanity colonize space.

Currently, astrobiologists are hard at work searching for life, trying to answer this question. The SETI Institute is scanning radio signals from space, hoping to catch a message. Since humans use radio waves, maybe aliens will too. NASA is using the Curiosity Rover to search for evidence that liquid water existed on the surface of Mars long enough for life to get going. The general rule is if we find liquid water on Earth, we find life. Astronomers are preparing to study the atmospheres of extrasolar planets, looking for gasses that match what we have here on Earth.

Isn’t this just intellectually lazy? Do our scientists lack imagination? Aren’t they all supposed to watch Star Trek How do we know that life is going to look anything like the life we have on Earth? Oh, the hubris!

Who’s to say aliens will bother to communicate with radio waves, and will transcend this quaint transmission system and use beams of neutrinos instead. Or physics we haven’t even discovered yet? Perhaps they talk using microwaves and you can tell what the aliens are saying by how your face gets warmed up. And how do we know that life needs to depend on water and carbon? Why not silicon-based lifeforms, or beings which are pure energy? What about aliens that breathe pure molten boron and excrete seahorse dreams? Why don’t these scientists expand their search to include life as we don’t know it? Why are they so closed-minded?

Viking Lander
In 1976, two Viking spacecraft landed on Mars. The image is of a model of the Viking lander, along with astronomer and pioneering astrobiologist Carl Sagan. Each lander was equipped with life detection experiments designed to detect life based on its metabolic activities.
Credits: NASA/Jet Propulsion Laboratory, Caltech

The reality is they’re just being careful. A question this important requires good evidence. Consider the search for life on Mars. Back in the 1970s, the Viking Lander carried an experiment that would expose Martian soil to water and nutrients, and then try to detect out-gassing from microbes. The result of the experiment was inconclusive, and scientists still argue over the results today. If you’re going to answer a question like this, you want to be conclusive. Also, getting to Mars is pretty challenging to begin with. You probably don’t want to “half-axe” your science.

The current search for life is incremental and exhaustive. NASA’s Spirit and Opportunity searched for evidence that liquid water once existed on the surface of Mars. They found evidence of ancient water many times, in different locations. The fact that water once existed on the surface of Mars is established. Curiosity has extended this line of research, looking for evidence that water existed on the surface of Mars for long periods of time. Long enough that life could have thrived. Once again, the rover has turned up the evidence that scientists were hoping to see. Mars was once hospitable for life, for long periods of time. The next batch of missions will actually search for life, both on the surface of Mars and bringing back samples to Earth so we can study them here.

The search for life is slow and laborious because that’s how science works. You start with the assumption that since water is necessary for life on Earth, it makes sense to just check other water in the Solar System. It’s the low hanging fruit, then once you’ve exhausted all the easy options, you get really creative.

An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.
An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.

Scientists have gotten really creative about how and where they could search for life. Astrobiologists have considered other liquids that could be conducive for life. Instead of water, it’s possible that alternative forms of life could use liquid methane or ammonia as a solvent for its biological processes. In fact, this environment exists on the surface of Titan. But even if we did send a rover to Titan, how would we even know what to look for?

We understand how life works here, so we know what kinds of evidence to pursue. But kind of what evidence would be required to convince you there’s life as you don’t understand it? Really compelling evidence.
Go ahead and propose some alternative forms of life and how you think we’d go searching for it in the comments.

Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank Kuri the Vegan Traveller and Craig Hayes, and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.

Foom! Flaming Rocket Sled Tests Parachute For Mars Spacecraft

The "rocket sled" that is a part of the Low-Density Supersonic Decelerator Project testing methods to slow spacecraft before they land. Credit: NASA

Watch the video above to the two-minute mark (and beyond) and we guarantee a brilliant start to your Friday. “Enter Sandman” indeed, Metallica. Look past the flames and thrust, however, and you will see a parachute test in action that could help spacecraft land safely on Mars one day.

This is an undated “rocket sled” test of the Low-Density Supersonic Decelerator, a technology aiming to be a more advanced way to bring spacecraft to Mars besides the 1970s-era Viking parachutes that were used as late as the Curiosity mission.

And supersonic flight tests of this technology will take place this year and next, according to NASA. The technology could be used on spacecraft as early as 2018, the agency added.

“NASA seeks to use atmospheric drag as a solution, saving rocket engines and fuel for final maneuvers and landing procedures,” the agency states on the project’s web page. “The heavier planetary landers of tomorrow, however, will require much larger drag devices than any now in use to slow them down — and those next-generation drag devices will need to be deployed at higher supersonic speeds to safely land vehicle, crew and cargo.”

“One of the tests on my LDSD project, which combines the Navy version of a Blackhawk helicopter, a giant 110 foot parachute, 3000 pounds of rope, a very big pulley, four rockets, and a railroad track in the desert. The test successfully uncovered a design flaw in the parachute before we flew one like it on a much more expensive test — which is exactly what this test was for,” wrote collaborator Mark Adler (a fellow at the Jet Propulsion Laboratory who was a mission manager for the Spirit rover) on Google Plus.

As part of this project, NASA is testing three devices. The first is a huge parachute (30.5 meters, or 100 feet) that will deploy when the spacecraft is at about 1.5 to 2 times the speed of sound to slow it down.

NASA's Curiosity rover heads for a successful landing Aug. 6 under its parachute. Picture snapped by NASA's Mars Reconnaissance Orbiter's  High-Resolution Imaging Science Experiment (HiRISE). Credit: NASA/JPL-Caltech/Univ. of Arizona
NASA’s Curiosity rover heads for a successful landing Aug. 6 under its parachute. Picture snapped by NASA’s Mars Reconnaissance Orbiter’s High-Resolution Imaging Science Experiment (HiRISE). Credit: NASA/JPL-Caltech/Univ. of Arizona

At faster speeds, NASA also plans inflatable aerodynamic decelerators, which it describes as “very large, durable, balloon-like pressure vessels.” These devices are being tested in two versions: six-meter and eight-meter (19.7 feet and 26.2 feet). They are designed to balloon around the spacecraft to slow it down from 3.5 times the speed of sound to at least twice the speed of sound, if not lower.

“All three devices will be the largest of their kind ever flown at speeds several times greater than the speed of sound,” NASA stated.

The project is a NASA technology demonstration mission led by the Jet Propulsion Laboratory. This test and similar ones were conducted at the conducted at the U.S. Naval Air Weapons Station at China Lake, Calif. More videos and information are available at LDSD’s webpage.

Huge hat-tip to @marsroverdriver for highlighting this on his Twitter account yesterday (Thursday).

Flashback: 1978 NASA Film Shows Viking Discoveries

In what’s a sort of foreshadowing of the upcoming August 5 MSL landing, which is being called “seven minutes of terror”, here’s a flashback film from 1978 called “19 Minutes to Earth” which looks at the discoveries made by the Viking orbiter and lander, which made its historic arrival on Mars 36 years ago, on July 20, 1976.

In true late ’70s style the video is full of funky music and (what was then) state-of-the-art video graphics. Awesome.


Even more than the music, though, what’s interesting about the 1978 film is how the subject of microbial life is discussed. Both Viking 1 and 2 were designed to search for evidence of biological activity on Mars, which they did by digging into the Martian soil and looking for signs of resulting respiration.

Although the results were initially deemed inconclusive, further research into the Viking data has prompted some scientists to claim that the landers did, in fact, find evidence of life on Mars.

It’s still a much-debated topic, one that scientists hope to help settle with the upcoming research performed by Curiosity and the Mars Science Laboratory mission.

Funky music and all, the Viking programs paved the way for all future missions to Mars. Lessons learned from Viking technology have blazed the trail for Mars research, from Pathfinder’s Sojourner rover to Spirit and Opportunity, the Mars Reconnaissance Orbiter and ESA’s Mars Express. Very soon Curiosity will continue on with the legacy of robotic exploration of the Red Planet, and someday I’m sure our children and grandchildren will look back at the “funky videos” of our time.

Let’s hope that by then they’ve made their own great strides in space exploration and have found answers to the questions that inspire us today.

Video: NASA. Image: artist’s concept of the Viking lander (NASA).

Astronomy Cast, Ep: 258: Viking Landers

Last week we talked about the orbiter portion of the Viking Missions. But that was only half the adventure. Each Viking spacecraft carried a lander as well, which touched down on the surface of Mars, searching for evidence of past and current life. And what they discovered is still up for debate.

We record Astronomy Cast live every Monday at 12 pm PST / 3 pm EST / 2000 GMT. If you want to join in our recording, just make sure you’ve got Fraser circled on Google+, then the show will show up in your stream. You can also watch us live at Cosmoquest.

Is This Proof of Life on Mars?

View of Mars from Viking 2 lander, September 1976. (NASA/JPL-Caltech)

[/caption]

The Curiosity rover is currently on its way to Mars, scheduled to make a dramatic landing within Gale Crater in mid-August and begin its hunt for the geologic signatures of a watery, life-friendly past. Solid evidence that large volumes of water existed on Mars at some point would be a major step forward in the search for life on the Red Planet.

But… has it already been found? Some scientists say yes.

Researchers from universities in Los Angeles, California, Tempe, Arizona and Siena, Italy have published a paper in the International Journal of Aeronautical and Space Sciences (IJASS) citing the results of their work with data obtained by NASA’s Viking mission.

The twin Viking 1 and 2 landers launched in August and September of 1975 and successfully landed on Mars in July and September of the following year. Their principal mission was to search for life, which they did by digging into the ruddy Martian soil looking for signs of respiration — a signal of biological activity.

A six-inch-deep trench in the Martian soil dug by Viking 1 in February 1977. The goal was to reach a foot below the surface for sampling.

The results, although promising, were inconclusive.

Now, 35 years later, one team of researchers claims that the Viking landers did indeed detect life, and the data’s been there all along.

“Active soils exhibited rapid, substantial gas release,” the  team’s report states. “The gas was probably CO2 and, possibly, other radiocarbon-containing gases.”

By applying mathematical complexities to the Viking data for deeper analysis, the researchers found that the Martian samples behaved differently than a non-biological control group.

“Control responses that exhibit relatively low initial order rapidly devolve into near-random noise, while the active experiments exhibit higher initial order which decays only slowly,” the paper states. “This suggests a robust biological response.”

While some critics of the findings claim that such a process of identifying life has not yet been perfected — not even here on Earth — the results are certainly intriguing… enough to bolster support for further investigation into Viking data and perhaps re-evaluate the historic mission’s “inconclusive” findings.

The team’s paper can be found here.

Image credits: NASA/JPL-Caltech. Also, read more on Irene Klotz’s article on Discovery News.

Could Curiosity Determine if Viking Found Life on Mars?

The landing site of Viking 1 on Mars in 1977, with trenches dug in the soil for the biology experiments. Credit: NASA/JPL

[/caption]

One of the most controversial and long-debated aspects of Mars exploration has been the results of the Viking landers’ life-detection experiments back in the 1970s. While the preliminary findings were consistent with the presence of bacteria (or something similar) in the soil samples, the lack of organics found by other instruments forced most scientists to conclude that the life-like responses were most likely the result of unknown chemical reactions, not life. Gilbert V. Levin, however, one of the primary scientists involved with the Viking experiments, has continued to maintain that the Viking landers did indeed find life in the Martian soil. He also now thinks that the just-launched Curiosity rover might be able to confirm this when it lands on Mars next summer.

Curiosity is not specifically a life-detection mission. Rather, it continues the search for evidence of habitability, both now and in the past. But is it possible that it could find evidence for life anyway? Levin believes it could, between its organics detection capability and its high-resolution cameras.

The major argument against the life-detection claims was the lack of organics found in the soil. How could there be life with no organic building blocks? It has since been thought that any organics were destroyed by the harsh ultraviolet radiation or other chemical compounds in the soil itself. Perchlorates could do that, and were later found in the soil by the Phoenix mission a few years ago, closer to the north pole of Mars. The experiments themselves, which included baking the soil at high heat, may have destroyed any organics present (part of the studies involved heating the soil to kill any organisms and then study the residual gases released as a result, as well as feeding nutrients to any putative organisms and analyzing the gases released from the soil). If Curiosity can find organics, either in the soil or by drilling into rocks, Levin argues, that would bolster the case for life being found in the original Viking experiments, as they were the “missing piece” to the puzzle.

So what about the cameras? Any life would have to be macro, of visible size, to be detected. Levin and his team had also found “greenish coloured patches” on some of the nearby rocks. (I still have a little booklet published by Levin at the time, “Color and Feature Changes at Mars Viking Lander Site” which describes these in more detail). When as a test, lichen-bearing rocks on Earth were viewed with the same camera system using visible and infrared spectral analysis, the results were remarkably similar to what was seen on Mars. Again, since then though, those results have been widely disputed, with most scientists thinking the patches were mineral coatings similar to others seen since then. Of course, there is also the microscopic imager, similar to that on the Spirit and Opportunity rovers, although microorganisms would still be too small to be seen directly.

Regardless, Levin feels that Curiosity just might be able to vindicate his earlier findings, stating “This is a very exciting time, something for which I have been waiting for years. At the very least, the Curiosity results may bring about my long-requested re-evaluation of the Viking LR results. The Viking LR life detection data are the only data that will ever be available from a pristine Mars. They are priceless, and should be thoroughly studied.”