This radar image of the surface of Saturn’s moon Titan was acquired on October 26, 2004, when the Cassini spacecraft flew approximately 1,600 kilometers (994 miles) above the surface and acquired radar data for the first time.
Brighter areas may correspond to rougher terrains and darker areas are thought to be smoother. This image highlights some of the darker terrain, which the Cassini team has nicknamed “Si-Si the Cat” after a team member’s daughter, who pointed out its cat-like appearance. The interconnected dark spots are consistent with a very smooth or highly absorbing solid, or could conceivably be liquid.
The image is about 250 kilometers (155 miles) wide by 478 kilometers (297 miles) long, and is centered at 50 N, 54 W in the northern hemisphere of Titan, over a region that has not yet been imaged optically. The smallest details seen on the image vary from about 300 meters (984 feet) to 1 kilometer (.62 mile).
The data were acquired in the synthetic aperture radar mode of Cassini’s radar instrument. In this mode, radio signals are bounced off the surface of Titan. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The instrument team is based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif.
For the latest news about the Cassini-Huygens mission visit http://www.nasa.gov/cassini . For more information about the mission visit http://saturn.jpl.nasa.gov .
Original Source: NASA/JPL/SSI News Release
Space tourism here is here to stay, and will likely remain a permanent fixture of…
In 1960, in preparation for the first SETI conference, Cornell astronomer Frank Drake formulated an…
The Pentagon office in charge of fielding UFO reports says that it has resolved 118…
The Daisy World model describes a hypothetical planet that self-regulates, maintaining a delicate balance involving…
Researchers have been keeping an eye on the center of a galaxy located about a…
When it comes to telescopes, bigger really is better. A larger telescope brings with it…