Categories: Jupiter

Io’s Volcanoes are in the Wrong Place

Jupiter’s moon Io features at least 400 active volcanoes, making it the most volcanically active world in our Solar System. However, the location of the volcanoes on Io just doesn’t match up with scientific models that predict how the moon’s interior is heated.

“Rigorous statistical analysis of the distribution of volcanoes in the new global geologic map of Io,” said Christopher Hamilton of the University of Maryland, College Park and the Goddard Spaceflight Center. “We found a systematic eastward offset between observed and predicted volcano locations that can’t be reconciled with any existing solid body tidal heating models.”

Io’s internal heat is created by the tidal forces inflicted from the giant planet Jupiter on one side and from two neighboring moons that orbit further from Jupiter – Europa and Ganymede on the other.

Researchers say there are questions about how this tidal heating affects the moon’s interior. Some propose it heats up the deep interior, but the prevailing view is that most of the heating occurs within a relatively shallow layer under the crust, called the asthenosphere. The asthenosphere is where rock behaves like putty, slowly deforming under heat and pressure.

“Our analysis supports the prevailing view that most of the heat is generated in the asthenosphere, but we found that volcanic activity is located 30 to 60 degrees East from where we expect it to be,” said Hamilton.

On Earth, a simple explanation how volcanoes are created is that when tectonic plates shift in such a way, the subsurface magma is able to flow onto the surface. On Io, the tidal forces from Jupiter actually force Io’s surface to bulge up and down by as much as 100 m, causing magma to flow continuously.

The scientists explained the tug-of-war between Jupiter’s massive gravity and the smaller but precisely timed pulls from two neighboring moons like this:

Io orbits faster than these other moons, completing two orbits every time Europa finishes one, and four orbits for each one Ganymede makes. This regular timing means that Io feels the strongest gravitational pull from its neighboring moons in the same orbital location, which distorts Io’s orbit into an oval shape. This in turn causes Io to flex as it moves around Jupiter.

For example, as Io gets closer to Jupiter, the giant planet’s powerful gravity deforms the moon toward it and then, as Io moves farther away, the gravitational pull decreases and the moon relaxes. The flexing from gravity causes tidal heating — in the same way that you can heat up a spot on a wire coat hanger by repeatedly bending it, the flexing creates friction in Io’s interior, which generates the tremendous heat that powers the moon’s extreme volcanism.

This is a map of the predicted heat flow at the surface of Io from different tidal heating models. Red areas are where more heat is expected at the surface while blue areas are where less heat is expected. Figure A shows the expected distribution of heat on Io’s surface if tidal heating occurred primarily within the deep mantle, and figure B is the surface heat flow pattern expected if heating occurs primarily within the asthenosphere. In the deep mantle scenario, surface heat flow concentrates primarily at the poles, whereas in the asthenospheric heating scenario, surface heat flow concentrates near the equator. Credit: NASA/Christopher Hamilton.

But a new geologic map of Io showed the offset of the volcanoes from where the model predicted them to be.

Possibilities to explain the offset include a faster than expected rotation for Io, an interior structure that permits magma to travel significant distances from where the most heating occurs to the points where it is able erupt on the surface, or a missing component in existing tidal heating models, like fluid tides from an underground magma ocean, according to the team.

The magnetometer instrument on NASA’s Galileo mission detected a magnetic field around Io, suggesting the presence of a global subsurface magma ocean. As Io orbits Jupiter, it moves inside the planet’s vast magnetic field. Researchers think this could induce a magnetic field in Io if it had a global ocean of electrically conducting magma.

“Our analysis supports a global subsurface magma ocean scenario as one possible explanation for the offset between predicted and observed volcano locations on Io,” says Hamilton. “However, Io’s magma ocean would not be like the oceans on Earth. Instead of being a completely fluid layer, Io’s magma ocean would probably be more like a sponge with at least 20 percent silicate melt within a matrix of slowly deformable rock.”

Tidal heating is also thought to be responsible for oceans of liquid water likely to exist beneath the icy crusts of Europa and Saturn’s moon Enceladus. Since liquid water is a necessary ingredient for life, some researchers propose that life might exist in these subsurface seas if a useable energy source and a supply of raw materials are present as well. These worlds are far too cold to support liquid water on their surfaces, so a better understanding of how tidal heating works may reveal how it could sustain life in otherwise inhospitable places throughout the Universe.

“The unexpected eastward offset of the volcano locations is a clue that something is missing in our understanding of Io,” says Hamilton. “In a way, that’s our most important result. Our understanding of tidal heat production and its relationship to surface volcanism is incomplete. The interpretation for why we have the offset and other statistical patterns we observed is open, but I think we’ve enabled a lot of new questions, which is good.”

Io’s volcanism is so extensive that it gets completely resurfaced about once every million years or so, actually quite fast compared to the 4.5-billion-year age of the solar system. So in order to know more about Io’s past, we have to understand its interior structure better, because its surface is too young to record its full history, according to Hamilton.

Source: JPL

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

New Study Examines Cosmic Expansion, Leading to a New Drake Equation

In 1960, in preparation for the first SETI conference, Cornell astronomer Frank Drake formulated an…

2 hours ago

Pentagon’s Latest UFO Report Identifies Hotspots for Sightings

The Pentagon office in charge of fielding UFO reports says that it has resolved 118…

2 hours ago

A New Way to Detect Daisy Worlds

The Daisy World model describes a hypothetical planet that self-regulates, maintaining a delicate balance involving…

3 hours ago

Two Supermassive Black Holes on the Verge of a Merger

Researchers have been keeping an eye on the center of a galaxy located about a…

6 hours ago

Interferometry Will Be the Key to Resolving Exoplanets

When it comes to telescopes, bigger really is better. A larger telescope brings with it…

7 hours ago

A New Mission To Pluto Could Answer the Questions Raised by New Horizons

Pluto may have been downgraded from full-planet status, but that doesn't mean it doesn't hold…

8 hours ago