Categories: esaMoon

This Machine Could Help Robots Stick The Landing On Other Worlds

Mission planners really hate it when space robots land off course. We’re certainly improving the odds of success these days (remember Mars Curiosity’s seven minutes of terror?), but one space agency has a fancy simulator up its sleeve that could make landings even more precise.

Shown above, this software and hardware (tested at the European Space Agency) so impressed French aerospace center ONERA that officials recently gave the lead researcher an award for the work.

“If I’m a tourist in Paris, I might look for directions to famous landmarks such as the Eiffel Tower, the Arc de Triomphe or Notre Dame cathedral to help find my position on a map,” stated Jeff Delaune, the Ph.D. student performing the research.

“If the same process is repeated from space with enough surface landmarks seen by a camera, the eye of the spacecraft, it can then pretty accurately identify where it is by automatically comparing the visual information to maps we have onboard in the computer.”

ESA’s SMART-1 mission took this collection of lunar pictures around the south pole, a possible landing target for future missions. Credit: ESA

Because landmarks close-up can look really different from far away, this system has a method to try and get around that problem.

The so-called ‘Landing with Inertial and Optical Navigation’ (LION) system takes the real-time images generated by the spacecraft’s camera and compares it to maps from previous missions, as well as 3-D digital models of the surface.

LION can take into account the relative size of every point it sees, whether it’s a huge crater or a tiny boulder.

At ESA’s control hardware laboratory in Noordwijk, the Netherlands, officials tested the system with a high-res map of the moon.

Though this is just a test and there is still a ways to go before this system is space-ready, ESA said simulated positional accuracy was better than 164 feet at 1.86 miles in altitude (or 50 meters at three kilometers in altitude.)

Oh, and while it’s only been tested with simulated moon terrain so far, it’s possible the same system could help a robot land on an asteroid, or Mars, ESA adds.

No word on when the system will first hitch an interplanetary ride, but Delaune is working to apply the research to terrestrial matters such as unmanned aerial vehicles.

Check out more details on the testing on ESA’s website.

Source: ESA

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

4 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

5 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

1 day ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago