Smile! This Could Be The Lightest Alien Planet Ever Captured On Camera

We’ve found hundreds of planets outside the solar system, but taking a picture of one is still something quite special. The light of the parent star tends to greatly overwhelm the faint light of the alien planet. (So usually we learn about planets by tracking the effects each planet has on its star, like dimming light when it passes in front or making the star slightly wobble.)

This picture (above) shows HD95086 b, which astronomers believe is one of only about a dozen exoplanets ever imaged. It’s 300 light-years from Earth. The planet candidate is about four to five times the mass of Jupiter and orbiting a very young star that is probably only 10 million to 17 million years old. That’s a baby compared to our own solar system, estimated at 4.5 billion years old.

We still have a lot to learn about this object (and the observations from the Very Large Telescope will need to be confirmed independently), but so far astronomers say they figure that planet formed in the gas and dust surrounding star HD 95086. But the planet is actually very far away from the star now, about twice the distance as the Sun-Neptune orbital span in our own solar system.

The Very Large Telescope (VLT) at ESO’s Cerro Paranal observing site. Credit: European Southern Observatory

“Its current location raises questions about its formation process,” stated team member Anne-Marie Lagrange, who is with the Grenoble Institute of Planetology and Astrophysics in France.

“It either grew by assembling the rocks that form the solid core and then slowly accumulated gas from the environment to form the heavy atmosphere, or started forming from a gaseous clump that arose from gravitational instabilities in the disc.

“Interactions between the planet and the disc itself,” she added, “or with other planets may have also moved the planet from where it was born.”

Astronomers estimate the planet candidate has a surface temperature of 1,292 degrees Fahrenheit (700 degrees Celsius), which could allow water vapor or methane to stick around in the atmosphere. It will take more VLT observations to figure this out, though.

The results from this study will be published in Astrophysical Journal Letters. The paper is also available on prepublishing site Arxiv.

Source: European Southern Observatory

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

How Many Additional Exoplanets are in Known Systems?

NASA's TESS mission has turned up thousands of exoplanet candidates in almost as many different…

1 hour ago

Hubble and Webb are the Dream Team. Don't Break Them Up

Many people think of the James Webb Space Telescope as a sort of Hubble 2.…

8 hours ago

Scientists Have Figured out why Martian Soil is so Crusty

On November 26th, 2018, NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight)…

16 hours ago

Another Way to Extract Energy From Black Holes?

Black holes are incredible powerhouses, but they might generate even more energy thanks to an…

22 hours ago

Plastic Waste on our Beaches Now Visible from Space, Says New Study

According to the United Nations, the world produces about 430 million metric tons (267 U.S.…

2 days ago

Future Space Telescopes Could be Made From Thin Membranes, Unrolled in Space to Enormous Size

As we saw with JWST, it's difficult and expensive to launch large telescope apertures, relying…

2 days ago