Categories: AstronomyTechnology

‘The New Cool’: How These Sharp Space Pictures Were Snapped From A Ground Telescope

Rise above Earth with a telescope, and one huge obstacle to astronomy is removed: the atmosphere. We love breathing that oxygen-nitrogen mix, but it’s sure not fun to peer through it. Ground-based telescopes have to deal with air turbulence and other side effects of the air we need to breathe.

Enter adaptive optics — laser-based systems that can track the distortions in the air and tell computers in powerful telescopes how to flex their mirrors. That sparkling picture above came due to a new system at the Gemini South telescope in Chile.

It’s one of only a handful pictures released, but astronomers are already rolling out the superlatives.

“GeMS sets the new cool in adaptive optics,” stated Tim Davidge, an astronomer at Canada’s Dominion Astrophysical Observatory.

The planetary nebula NGC 2346. Credit: Gemini Observatory/AURA (Image data from Letizia Stanghellini, National Optical Astronomy Observatory, Tucson, Arizona. Color composite image by Travis Rector, University of Alaska Anchorage.)

“It opens up all sorts of exciting science possibilities for Gemini, while also demonstrating technology that is essential for the next generation of ground-based mega-telescopes. With GeMS we are entering a radically new, and awesome, era for ground-based optical astronomy.”

Other telescopes have adaptive optics, but the Gemini Multi-Conjugate Adaptive Optics System (GEMS) has some changes to what’s already used.

It uses a technique called “multi-conjugate adaptive optics”. This increases the possible size of sky swaths the telescope can image, while also giving a sharp view across the entire field. According to the observatory, the new system makes Gemini’s eight-meter mirror 10 to 20 times more efficient.

The Gemini South telescope during laser operations with GeMS/GSAOI. Credit: Manuel Paredes

The system uses a constellation of five laser guide stars, and has several mirrors that can deform according to measurements obtained by the sodium laser. We have more technical details in this past Universe Today story by Tammy Plotner.

The next step will be seeing what kind of science Gemini can produce from the ground with this laser system. Some possible directions include supernova research, star populations in galaxies outside of the Milky Way, and studying more detail in planetary nebulae — the remnants of low- and medium-mass star.

Check out more photos from Gemini at this link.

Source: Gemini Observatory

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Here’s What We Know About Earth’s Temporary Mini-Moon

For a little over a month now, the Earth has been joined by a new…

52 minutes ago

New Study Suggests Black Holes Get their “Hair” from their Mothers

Despite decades of study, black holes are still one of the most puzzling objects in…

2 hours ago

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

2 hours ago

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

7 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

9 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

21 hours ago