The Sun is hot, really hot. How hot hot really is, depends on which part you’re talking about:
The sun has a core, a middle, a surface, and an atmosphere.
Starting from the inside out…
There’s the core, where the pressure and temperature are so great that atoms of hydrogen are fused into helium. Every second, 600 million tons of material go through this conversion, releasing vast amounts of gamma radiation. This is the hottest natural place in the Solar System, reaching temperatures of 15 million degrees Celsius. Photons generated at the core of the Sun are emitted and absorbed countless times over thousands of years on their journey to reach the surface.
Outside the core is the radiative zone. Here, temperatures dip down to where fusion reactions can no longer occur, ranging from 7 million down to 2 million degrees Celsius.
Next on our journey outwards from the centre of the Sun, is the convective zone, where bubbles of plasma carry the heat to the surface like a giant lava lamp. Temperatures at the bottom of the convective zone are 2 million degrees.
Finally, the surface, the part of the star that we can see. This is where the temperature is a relatively cool 5,500 degrees Celsius.
Here’s the strange part, as you move further away from the Sun into its atmosphere, the temperature rises again. Above the surface is the chromosphere, where temperatures rise back up to 20,000 degrees Celsius.
How can the atmosphere of the Sun get hotter than regions inside it? Astronomers aren’t really sure, but there are two competing theories. It’s possible that waves of energy are released from the surface of the Sun, sending their energy high into the solar atmosphere. Or perhaps the Sun’s magnetic field releases energy into the corona as currents collapse and reconnect.
There are space missions in the works right now to help answer this baffling mystery, so we might have an answer soon.
Stars can get much hotter or colder than our Sun. From the coldest, dimmest red dwarf stars to the hottest blue giants; it’s an amazing Universe out there.
References:
Solar Probe Plus Mission
Solar Orbiter Mission
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…
A team of astronomers have detected a surprisingly fast and bright burst of energy from…
Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…
In 1971, the Soviet Mars 3 lander became the first spacecraft to land on Mars,…
Many of the black holes astronomers observe are the result of mergers from less massive…