Categories: Earth Observation

Earth Seen in Gamma Rays

A NASA-funded scientist has produced a new type of picture of the Earth from space, which complements the familiar image of our “blue marble”. This new picture is the first detailed image of our planet radiating gamma rays, a type of light that is millions to billions of times more energetic than visible light.

The image portrays how the Earth is constantly bombarded by particles from space. These particles, called cosmic rays, hit our atmosphere and produce the gamma-ray light high above the Earth. The atmosphere blocks harmful cosmic rays and other high-energy radiation from reaching us on the Earth’s surface.

“If our eyes could see high-energy gamma rays, this is what the Earth would look like from space,” said Dr. Dirk Petry of NASA Goddard Space Flight Center in Greenbelt, Md. “Other planets — most famously, Jupiter — have a gamma-ray glow, but they are too far away from us to image in any detail.”

Petry assembled this image from seven years of data from NASA’s Compton Gamma-Ray Observatory, which was active from 1991 to 2000. The Compton Observatory orbited the Earth at an average altitude of about 260 miles (420 km). From this distance, the Earth appears as a huge disk with an angular diameter of 140 degrees. The long exposure and close distance enabled Petry to produce a gamma-ray image of surprisingly high detail. “This is essentially a seven-year exposure,” Petry said.

The gamma rays produced in the Earth’s atmosphere were detected by Compton’s EGRET instrument, short for Energetic Gamma-Ray Experiment Telescope. In fact, 60 percent of the gamma rays detected by EGRET were from Earth and not deep space. Although it makes a pretty image, local gamma-ray production interferes with observations of distant gamma-ray sources, such as black holes, pulsars, and supernova remnants.

Petry created this gamma-ray Earth image to better understand the impact of “local” cosmic-ray and gamma-ray interactions on an upcoming NASA mission called GLAST, the Gamma-ray Large Area Space Telescope. GLAST is planned for launch in 2007. Its main instrument, the Large Area Telescope, is essentially EGRET’s successor.

In 1972 and 1973 the NASA satellite SAS-II captured the first resolved image of the Earth in gamma rays, but the detectors had less exposure time (a few months) and worse energy resolution.

Petry, a member of the GLAST team at NASA Goddard, is an assistant research professor at the Joint Center for Astrophysics of the University of Maryland, Baltimore Country. A scientific paper describing his work is available at:

http://xxx.lanl.gov/abs/astro-ph/0410487

Original Source: NASA News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Astronomers Find a Black Hole Tipped Over on its Side

Almost every large galaxy has a supermassive black hole churning away at its core. In…

2 hours ago

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

18 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

19 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

2 days ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

3 days ago