Wet Asteroid’s Remains Found In Old Star That Could Have Hosted Habitable Planets

Remains of a water-filled asteroid are circling a dying white dwarf star, right now, about 150 light-years from us. The new find is the first demonstration of water and a rocky surface in a spot beyond the solar system, researchers say.

The discovery is exciting to the astronomical team because, according to them, it’s likely that water on Earth came from asteroids, comets and other small bodies in the solar system. Finding a watery rocky body demonstrates that this theory has legs, they said. (There are, however, multiple explanations for water on Earth.)

“The finding of water in a large asteroid means the building blocks of habitable planets existed – and maybe still exist – in the GD 61 system, and likely also around substantial number of similar parent stars,” stated lead author Jay Farihi, from Cambridge’s Institute of Astronomy.

Earth’s oxygen and water as detected by Venus Express (ESA)

“These water-rich building blocks, and the terrestrial planets they build, may in fact be common – a system cannot create things as big as asteroids and avoid building planets, and GD 61 had the ingredients to deliver lots of water to their surfaces. Our results demonstrate that there was definitely potential for habitable planets in this exoplanetary system.”

More intriguing, however, is researchers found this evidence in a star system that is near the end of its life. So the team is framing this as a “look into our future”, when the Sun evolves into a white dwarf .

The water likely came from a “minor planet” that was at least 56 miles (90 kilometers) in diameter. Its debris was pulled into the atmosphere of the star, which was then examined by spectroscopy. This study revealed the ingredients of rocks inside the star, including magnesium, silicon and iron. Researchers then compared these elements to how abundant oxygen was, and found that there was in fact more oxygen than expected.

White Dwarf Star

“This oxygen excess can be carried by either water or carbon, and in this star there is virtually no carbon – indicating there must have been substantial water,” stated co-author Boris Gänsicke, from the University of Warwick.

“This also rules out comets, which are rich in both water and carbon compounds, so we knew we were looking at a rocky asteroid with substantial water content – perhaps in the form of subsurface ice – like the asteroids we know in our solar system such as Ceres.”

The measurements were obtained in ultraviolet with the Hubble Space Telescope’s cosmic origins spectrograph. What’s more, the researchers suspect there are giant exoplanets in the area because it would take a huge push to move this object from the asteroid belt — a push that most likely came from big planet.

“This supports the idea that the star originally had a full complement of terrestrial planets, and probably gas giant planets, orbiting it – a complex system similar to our own,” Farihi added.

The discovery was recently published in Science.

Source: University of Cambridge

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Hubble and Webb are the Dream Team. Don't Break Them Up

Many people think of the James Webb Space Telescope as a sort of Hubble 2.…

6 hours ago

Scientists Have Figured out why Martian Soil is so Crusty

On November 26th, 2018, NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight)…

14 hours ago

Another Way to Extract Energy From Black Holes?

Black holes are incredible powerhouses, but they might generate even more energy thanks to an…

19 hours ago

Plastic Waste on our Beaches Now Visible from Space, Says New Study

According to the United Nations, the world produces about 430 million metric tons (267 U.S.…

2 days ago

Future Space Telescopes Could be Made From Thin Membranes, Unrolled in Space to Enormous Size

As we saw with JWST, it's difficult and expensive to launch large telescope apertures, relying…

2 days ago

Voyager 1 is Forced to Rely on its Low Power Radio

Voyager 1 was launched waaaaaay back in 1977. I would have been 4 years old…

3 days ago