Categories: Extrasolar Planets

Largest Core in an Extrasolar Planet

Artist illustration of the planet orbiting the sun-like star HD 149026. Image credit: U.C. Santa Cruz. Click to enlarge.
NASA researchers recently discovered the largest solid core ever found in an extrasolar planet, and their discovery confirms a planet formation theory.

“For theorists, the discovery of a planet with such a large core is as important as the discovery of the first extrasolar planet around the star 51 Pegasi in 1995,” said Shigeru Ida, theorist from the Tokyo Institute of Technology, Japan.

When a consortium of American, Japanese and Chilean astronomers first looked at this planet, they expected one similar to Jupiter. “None of our models predicted that nature could make a planet like the one we are studying,” said Bun’ei Sato, consortium member and postdoctoral fellow at Okayama Astrophysical Observatory, Japan.

Scientists have rarely had opportunities like this to collect such solid evidence about planet formation. More than 150 extrasolar planets have been discovered by observing changes in the speed of a star, as it moves toward and away from Earth. The changes in speed are caused by the gravitational pull of planets.

This planet also passes in front of its star and dims the starlight. “When that happens, we are able to calculate the physical size of the planet, whether it has a solid core, and even what its atmosphere is like,” said Debra Fischer. She is consortium team leader and professor of astronomy at San Francisco State University, Calif.

The planet, orbiting the sun-like star HD 149026, is roughly equal in mass to Saturn, but it is significantly smaller in diameter. It takes just 2.87 days to circle its star, and the upper atmosphere temperature is approximately 2,000 degrees Fahrenheit. Modeling of the planet’s structure shows it has a solid core approximately 70 times Earth’s mass.

This is the first observational evidence that proves the “core accretion” theory about how planets are formed. Scientists have two competing but viable theories about planet formation.

In the “gravitational instability” theory, planets form during a rapid collapse of a dense cloud. With the “core accretion” theory, planets start as small rock-ice cores that grow as they gravitationally acquire additional mass. Scientists believe the large, rocky core of this planet could not have formed by cloud collapse. They think it must have grown a core first, and then acquired gas.

“This is a confirmation of the core accretion theory for planet formation and evidence that planets of this kind should exist in abundance,” said Greg Henry, an astronomer at Tennessee State University, Nashville. He detected the dimming of the star by the planet with his robotic telescopes at Fairborn Observatory in Mount Hopkins, Arizona.

Original Source: NASA News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

New Study Suggests Black Holes Get their “Hair” from their Mothers

Despite decades of study, black holes are still one of the most puzzling objects in…

15 minutes ago

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

30 minutes ago

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

5 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

8 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

20 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

20 hours ago