This Spooky X-Ray ‘Hand’ Demonstrates A Pulsar Star Mystery

That spooky hand in the image above is producing questions for scientists. While the shape only coincidentally looks like a human hand, scientists are still trying to figure out how a small star produced such a large shape visible in X-rays.

Pulsar star PSR B1509-58 (or B1509 for short) is a 12-mile (19-kilometer) remnant of a much larger star that exploded and left behind a quickly spinning neutron star. Energy leaves mostly via neutrino (or neutral particle) emission, with a bit more coming out via beta decay, or a radioactive process where charged particles leave from atoms.

Using a new model, scientists found that so much energy comes out from neutrino emission that there shouldn’t be enough left for the beta decay to set off the X-rays you see here in this image, or in other situations. Yet it’s still happening. And that’s why they’re hoping to take a closer look at the situation.

Artist’s conception of a neutron star flare. Credit: University of California Santa Cruz

“Scientists are intrigued by what exactly powers these massive explosions, and understanding this would yield important insights about the fundamental forces in nature, especially on the astronomical/cosmological scale,” stated Peter Moller, who is with the theoretical division of Los Alamos National Laboratory and participated in the research.

Preliminary studies indicate that to better understand what’s happening on the surface of these objects, computer models must endeavor to “describe the shape of each individual nuclide” (or atom that has a certain number of protons and neutrons in its nucleus). That’s because not all of these nuclides are simple spheres.

Using facilities at Los Alamos, scientists created databases with different types of nuclides that had various beta-decay properties. They then plugged this into a Michigan State University model of neutron stars to see what energy was released as the stars accrete or come together.

Accretion can cause neutron stars to flare violently

The results stood against what was a “common assumption”, the scientists stated, that the radioactive action would be enough to power the X-rays. They urge more study on this front, especially using a proposed Facility for Rare Isotope Beams that would be built at Michigan State, using funding from the U.S. Department of Energy Office of Science. FRIB project participants are hoping that will be ready in the 2020s.

You can read more about the research in the Dec. 1 edition of Nature. It was led by Hendrik Schatz, a professor at the National Superconducting Cyclotron Laboratory at Michigan State.

Source: Los Alamos National Laboratory

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

6 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

6 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

1 day ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago