Categories: Black Holes

Rogue Supermassive Black Hole Has No Galaxy

Hubble image from a sample of 20 nearby quasars. Image credit: NASA/ESA/ESO Click to enlarge
The detection of a super-massive black hole without a massive ‘host’ galaxy is the surprising result from a large Hubble and VLT study of quasars.

This is the first convincing discovery of such an object. One intriguing explanation is that the host galaxy may be made almost exclusively of ‘dark matter’.
A team of European astronomers has used two of the most powerful astronomical facilities available, the NASA/ESA Hubble Space Telescope and the ESO Very Large Telescope (VLT) at Cerro Paranal, to discover a bright quasar without a massive host galaxy.

Quasars are powerful and typically very distant source of huge amounts of radiation. They are commonly associated with galaxies containing an active central black hole.

The team conducted a detailed study of 20 relatively nearby quasars. For 19 of them, they found, as expected, that these super-massive black holes are surrounded by a host galaxy. But when they studied the bright quasar HE0450-2958, located some 5000 million light-years away, they could not find evidence for a host galaxy.

The astronomers suggest that this may indicate a rare case of a collision between a seemingly normal spiral galaxy and an ‘exotic’ object harbouring a very massive black hole.

With masses that are hundreds of millions times bigger than the Sun, super-massive black holes are commonly found in the centres of the most massive galaxies, including our own Milky Way. These black holes sometimes dramatically manifest themselves by devouring matter that they gravitationally swallow from their surroundings.

The best fed of these objects shine as ‘quasars’ (standing for ‘quasi-stellar object’ because they had initially been thought of as stars).

The past decade of observations, largely with the Hubble telescope, has shown that quasars are normally associated with massive host galaxies. However, observing the host galaxy of a quasar is challenging work because the quasar completely outshines the host and masks the galaxy?s underlying structure.

To overcome this problem, the astronomers devised a new and highly efficient strategy. Combining Hubble?s ultra-sharp images and spectroscopy from ESO?s VLT, they observed their sample of 20 quasars at the same time as a reference star. The star served as a reference pinpoint light source that was used to disentangle the quasar light from any possible light from an underlying galaxy.

Despite the innovative techniques used, no host galaxy was seen around HE0450-2958. This means that if any host galaxy exists, it must either be at least six times fainter than typical host galaxies, or have a radius smaller than about 300 light-years, i.e. 20 to 170 times smaller than typical host galaxies (which normally have radii ranging from about 6000 to 50 000 light-years).

“With the powerful combination of Hubble and the VLT we are confident that we would have been able to detect a normal host galaxy,” said Pierre Magain of the Universit? de Li?ge, Belgium.

The astronomers did however detect an interesting smaller cloud of gas about 2500 light-years wide near the quasar, which they call ‘the blob’. VLT observations show this cloud to be glowing because it is bathed in the intense radiation coming from the quasar, and not from stars inside the cloud. Most likely, it is the gas from this cloud that feeds the super-massive black hole, thereby allowing it to become a quasar.

“The absence of a massive host galaxy, combined with the existence of the blob and the star-forming galaxy, lead us to believe that we have uncovered a really exotic quasar,” said Fr?d?ric Courbin of the Ecole Polytechnique Federale de Lausanne, Switzerland.

“There is little doubt that an increase in the formation of stars in the companion galaxy and the quasar itself have been ignited by a collision that must have taken place about 100 million years ago. What happened to the putative quasar host remains unknown.”

HE0450-2958 is a challenging case. The astronomers propose several possible explanations. Has the host galaxy been completely disrupted as a result of the collision? Has an isolated black hole captured gas while crossing the disk of a spiral galaxy? This would require very special conditions and would probably not have caused such a tremendous disturbance of the neighbouring galaxy as is observed. Further studies will hopefully clarify the situation.

Another intriguing hypothesis is that the galaxy harbouring the black hole was almost exclusively made of ‘dark matter’. It may be that what is observed is a normal phase in the formation of a massive galaxy, which in this case has taken place several 1000 million years later than in most others.

Original Source: ESA Portal

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Space Tourism: The Good, The Bad, The Meh

Space tourism here is here to stay, and will likely remain a permanent fixture of…

2 hours ago

New Study Examines Cosmic Expansion, Leading to a New Drake Equation

In 1960, in preparation for the first SETI conference, Cornell astronomer Frank Drake formulated an…

17 hours ago

Pentagon’s Latest UFO Report Identifies Hotspots for Sightings

The Pentagon office in charge of fielding UFO reports says that it has resolved 118…

18 hours ago

A New Way to Detect Daisy Worlds

The Daisy World model describes a hypothetical planet that self-regulates, maintaining a delicate balance involving…

19 hours ago

Two Supermassive Black Holes on the Verge of a Merger

Researchers have been keeping an eye on the center of a galaxy located about a…

21 hours ago

Interferometry Will Be the Key to Resolving Exoplanets

When it comes to telescopes, bigger really is better. A larger telescope brings with it…

23 hours ago