Categories: Astronomygalaxies

Supermassive Black Hole’s Dizzying Spin Is Half The Speed Of Light

The spin rate of the most distant supermassive black hole has been measured directly, and wow, is it fast. X-ray observations of  RX J1131-1231 (RX J1131 for short) show it is whizzing around at almost half the speed of light. Through X-rays, the astronomers were able to peer at the rate of debris fall into the singularity, yielding the speed measurement.

“We estimate that the X-rays are coming from a region in the disk located only about three times the radius of the event horizon — the point of no return for infalling matter,” stated Jon Miller, an an associate professor of astronomy at the University of Michigan and a co-author on the paper. “The black hole must be spinning extremely rapidly to allow a disk to survive at such a small radius.”

Supermassive black holes are embedded in the heart of most galaxies, and are millions or even billions of times for massive than the Sun. This makes the spin speed astonishingly fast, but also gives astronomers clues about how the host galaxy evolved.

“The growth history of a supermassive black hole is encoded in its spin, so studies of spin versus time can allow us study the co-evolution of black holes and their host galaxies,” stated Mark Reynolds, an assistant research scientist in astronomy at University of Michigan, another co-author on the study.

An artist’s conception of jets protruding from a quasar. Credit: ESO/M. Kornmesser

RX J1131 is six billion light-years away from Earth and classified as a quasar, a type of object that occurs when a lot of matter plunges into a supermassive black hole.

“Under normal circumstances, this faraway quasar would be too faint to study. But the researchers were able to take advantage of a sort of natural telescope effect known as gravitational lensing and a lucky alignment of the quasar and a giant elliptical galaxy to get a closer view,” the University of Michigan stated.

“Gravitational lensing, first predicted by Einstein, occurs when the gravity of massive objects acts as a lens to bend, distort and magnify the light from more distant objects as it passes.”

In this case, the researchers used the Chandra X-ray Observatory and the European Space Agency’s XMM-Newton Telescope to capture the X-ray images.

The research was led Rubens Reis, a postdoctoral research fellow in astronomy the University of Michigan. The paper is published today (March 5) in Nature.

For further reading, see the Chandra website and the associated NASA press release.

Source: University of Michigan

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

James Webb Confirms Hubble’s Calculation of Hubble’s Constant

We have been spoiled over recent years with first the Hubble Space Telescope (HST) and…

4 hours ago

What Should Light Sails Be Made Out Of?

The Breakthrough Starshot program aims to cross the immense distances to the nearest star in…

5 hours ago

A Giant Meteorite Impact 3.26 Billion Years Ago Helped Push Life Forward

The Earth has always been bombarded with rocks from space. It’s true to say though…

6 hours ago

America’s Particle Physics Plan Spans the Globe — and the Cosmos

RALEIGH, N.C. — Particle physicist Hitoshi Murayama admits that he used to worry about being…

17 hours ago

Millions of Phones Could Map the Earth’s Ionosphere

We are all familiar with the atmosphere of the Earth and part of this, the…

18 hours ago

Detecting Primordial Black Hole Mergers Might be Within Our Grasp

One explanation for dark matter is that it's made out of primordial black holes, formed…

1 day ago