Get Set For Comet K1 PanSTARRS: A Guide to its Spring Appearance

Get those binoculars ready: an icy interloper from the Oort cloud is about to grace the night sky.

The comet is C/2012 K1 PanSTARRS, and it’s currently just passed from the constellation Hercules into Corona Borealis and presents a good target for observers high in the sky in the hours before dawn. In fact, from our Tampa based latitude, K1 PanSTARRS is nearly at the zenith at around 6 AM local.

Observers currently place K1 PanSTARRS at magnitude +10.5 and brightening and showing a small condensed coma. Through the eyepiece, a comet at this stage will often resemble a fuzzy, unresolved globular star cluster.

And the good news is, K1 PanSTARRS will continue to brighten, headed northward through the early morning and then into the evening sky before reaching solar conjunction on August 9th, when it’ll actually pass behind the Sun for a few hours as seen from from our vantage point. We actually get two good apparitions of Comet K1 PanSTARRS: one for the northern hemisphere in the Spring and one for the southern hemisphere after it reaches perihelion and crosses south of the ecliptic plane in August.

And it’ll be worth keeping an eye out for K1 PanSTARRS online as well, as it passes into the view of SOHO’s LASCO C3 camera on August 2 before exiting its 15 degree field of view on August 16th.

This actually means the comet will reach opposition twice from our Earthbound vantage point: once on April 15th, and again on November 7th. And, as is often the case, this comet arrives six months early –or late, depending how you look at it- to be a fine naked eye object. Had K1 PanSTARRS reached perihelion in January, we’d have really been in for a show, with the comet only around 0.05 Astronomical Units (about 7.7 million kilometers) from the Earth!

The orbit of comet K1 PanSTARRS through the inner solar system. The yellow arrows denote the motion of the planets and the comet as seen from north of the ecliptic plane. Credit-NASA/JPL Horizons Solar System Dynamics generator.

But alas, such was not to be. At its best, K1 PanSTARRS will be hidden by the glare of the Sun at its very best, to emerge into the southern sky. The comet has a steeply inclined 142 degree retrograde orbit, and thus approaches the inner solar system from high above the ecliptic plane.

These coming last weeks of March are a great time to search out K1 PanSTARRS as the Moon reaches Last Quarter this weekend and heads towards New on March 30th, beginning a two week “moonless period for AM observing in early April. Projections by veteran comet observer Seiichi Yoshida suggest that K1 PanSTARRS will begin to brighten dramatically towards +8th magnitude through April. We first picked up the now posthumous comet ISON with binoculars around this magnitude last Fall. Keep in mind, like nebula and galaxies, the apparent brightness of a comet is spread out over its surface area. This can make a +10th magnitude comet much tougher to spot than a pinpoint +10 magnitude star.

We actually prefer our trusty Canon 15x45IS image stabilized binoculars for comet hunting… they’re powerful and easy to deploy on a cold March morning!

Here’s a handy list of notable events to watch for as Comet C/2012 K1 PanSTARRS crosses the springtime sky. Only passages of less than one degree near stars greater than magnitude +6 are mentioned except where otherwise noted:

March 17th: Comet C/2012 K1 PanSTARRS passes into the constellation Corona Borealis.

March 21st: Passes the +5.8 magnitude star Upsilon Coronae Borealis.

March 29th: Passes the +5.4 magnitude star Rho Coronae Borealis.

March 30th: The Moon reaches New phase.

The path of comet K1 PanSTARRS in one week intervals through March and April. Created using Stellarium.

April 2nd: Passes the +4.8 magnitude star Kappa Coronae Borealis.

April 7th: Passes the +5.2 magnitude star Mu Coronae Borealis.

April 10th: Passes into the constellation of Boötes.

April 10th: Passes the +5 magnitude wide binary pair Nu Boötis.

April 15th: Comet K1 PanSTARRS reaches opposition, rising opposite to the setting Sun and moving into the evening sky.

April 20th: K1 PanSTARRS becomes circumpolar for observers above 45 degrees north until May 25th.

April 26th: Passes into the constellation Ursa Majoris.

April 29th: Passes the bright +1.9th magnitude star Alkaid in the handle of the Big Dipper asterism. This is the brightest star that K1 PanSTARRS will pass near for this apparition, and Alkaid will make a great “finder” to spot the comet.

April 29th: The Moon reaches New phase.

April 30th: Approaches the +4.7 magnitude star 24 Canum Venaticorum.

The Spring path of comet K1 PanSTARRS from mid-March through late June. Credit: Starry Night Education Software.

May 1st: Passes into the constellation Canes Venatici.

May 1st:  Passes less than 2 degrees from the galaxy M51… photo op!

May 3rd: Passes the 5.1 magnitude star 21 Canum Venaticorum.

May 6th: K1 PanSTARRS Reaches a maximum declination of 49.5 degrees north.

May 11th: Passes the 5.3 magnitude star 3 Canum Venaticorum.

May 14th: Passes into the constellation Ursa Major.

May 17th: Another great photo ops awaits astrophotographers, as the comet passes the +3.7 magnitude star Chi Ursae Majoris and the +12 magnitude galaxy NGC 3877.

May 25th: Passes the 3rd magnitude star Psi Ursae Majoris.

May 28th: The Moon reaches New phase.

May 28th: Passes the 4.7 magnitude star Omega Ursae Majoris.

June 7th Passes into the constellation Leo Minor.

June 15th: Passes the +4.5 magnitude star 21 Leo Minoris.

June 22nd: Passes into the constellation Leo.

July 1- Passes to within 40 degrees elongation from the Sun.

And from there, Comet K1 PanSTARRS reaches perihelion just outside of the Earth’s orbit at 1.05 A.U. on August 27, and plunges south across the celestial equator on September 15.

Video animation of comet C/2012 K1 PanSTARRS over the span of an evening. Credit: Dan Crowson of Dardenne Prairie Missouri, used with permission. 

It’s also worth noting that K1 PanSTARRS will make its first of two approaches at a minimum distance of 1.471 A.U.s from Earth May 4th and will be moving at about a degree a day – twice the diameter of the Full Moon – before receding from us once more for a closer 1.056 A.U.  approach to Earth on August 25th.

Discovered on May 19th, 2012 by the PanSTARRS telescope based on the island of Maui, Comet K1 PanSTARRS was first spotted at 8.7 A.U.s distant, well past the orbit of Jupiter.  The PanSTARRS survey has been a prolific discoverer of asteroids and comets, including the brilliant comet C/2011 L4 PanSTARRS that graced dusk skies in March of last year.

Comet K1 PanSTARRS will join the ranks of comets reaching binocular observability later this year which includes C/2013 V5 Oukaimeden, Comet C/2013 A1 Siding Spring, and the recently discovered C/2014 E2 Jacques, which may reach +7th magnitude as it nears perihelion this coming July.

And those are just the binocular comets that are scheduled to perform… remember, the next “big one” could come barreling in towards the inner solar system at any time to put on a memorable performance worthy of another comet Hyakutake or Hale-Bopp… just not TOO close!

–      Be sure to send those comet pics in to Universe Today.

David Dickinson

David Dickinson is an Earth science teacher, freelance science writer, retired USAF veteran & backyard astronomer. He currently writes and ponders the universe as he travels the world with his wife.

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

52 minutes ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

2 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

1 day ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

1 day ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago