Slip-Sliding Away: Solar Flare’s Magnetic Lines Go For A Loop In This Video

When will the next big solar flare occur? How much damage could it cause to power lines and satellites? These are important questions for those looking to protect our infrastructure, but there’s still a lot we need to figure out concerning space weather.

The video above, however, shows magnetic lines weaving together from the surface of the Sun in 2012, eventually creating an eruption that was 35 times our planet’s size and sending out a surge of energy. It’s these energetic flares that can hit Earth’s atmosphere and cause auroras and power surges.

While models of this have been made before, this is the first time the phenomenon was caught in action. Scientists saw it using NASA’s Solar Dynamics Observatory.

Models of the flares show they typically occur amid distorted magnetic fields, the University of Cambridge noted, showing that the lines can “reconnect while slipping and flipping around each other.” Before the flare happens, the magnetic field lines line up in an arc across the sun’s surface (photosphere). That phenonemon is called field line footprints.

“In a smooth, non-entangled arc the magnetic energy levels are low, but entanglement will occur naturally as the footpoints move about each other,” the release added. “Their movement is caused as they are jostled from below by powerful convection currents rising and falling beneath the photosphere. As the movement continues, the entanglement of field lines causes magnetic energy to build up.”

When the energy gets to great, the lines let go of the energy, creating the solar flare and coronal mass ejection that can send material streaming away from the sun. A note, this observation was made of an X-class flare — the strongest kind of flare — and scientists say they are not sure if this phenomenon is true of all kinds of flares. That said, the phenomenon would be harder to spot in smaller flares.

You can read more about the research in the Astrophysical Journal or in preprint version on Arxiv. It was led by Jaroslav Dudik, a researcher at the University of Cambridge’s center for mathemetical sciences.

Source: University of Cambridge

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

15 hours ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

1 day ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

1 day ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago

Archaeology On Mars: Preserving Artifacts of Our Expansion Into the Solar System

In 1971, the Soviet Mars 3 lander became the first spacecraft to land on Mars,…

2 days ago

Building the Black Hole Family Tree

Many of the black holes astronomers observe are the result of mergers from less massive…

2 days ago