Categories: AstrobiologyMissions

A New Mantra: Follow the Methane — May Advance Search for Extraterrestrial Life

The search for life is largely limited to the search for water. We look for exoplanets at the correct distances from their stars for water to flow freely on their surfaces, and even scan radiofrequencies in the “water hole” between the 1,420 MHz emission line of neutral hydrogen and the 1,666 MHz hydroxyl line.

When it comes to extraterrestrial life, our mantra has always been to “follow the water.” But now, it seems, astronomers are turning their eyes away from water and toward methane — the simplest organic molecule, also widely accepted to be a sign of potential life.

Astronomers at the University College London (UCL) and the University of New South Wales have created a powerful new methane-based tool to detect extraterrestrial life, more accurately than ever before.

In recent years, more consideration has been given to the possibility that life could develop in other mediums besides water. One of the most interesting possibilities is liquid methane, inspired by the icy moon Titan, where water is as solid as rock and liquid methane runs through the river valleys and into the polar lakes. Titan even has a methane cycle.

Astronomers can detect methane on distant exoplanets by looking at their so-called transmission spectrum. When a planet transits, the star’s light passes through a thin layer of the planet’s atmosphere, which absorbs certain wavelengths of the light. Once the starlight reaches Earth it will be imprinted with the chemical fingerprints of the atmosphere’s composition.

But there’s always been one problem. Astronomers have to match transmission spectra to spectra collected in the laboratory or determined on a supercomputer. And “current models of methane are incomplete, leading to a severe underestimation of methane levels on planets,” said co-author Jonathan Tennyson from UCL in a press release.

So Sergei Yurchenko, Tennyson and colleagues set out to develop a new spectrum for methane. They used supercomputers to calculate about 10 billion lines — 2,000 times bigger than any previous study. And they probed much higher temperatures. The new model may be used to detect the molecule at temperatures above that of Earth, up to 1,500 K.

“We are thrilled to have used this technology to significantly advance beyond previous models available for researchers studying potential life on astronomical objects, and we are eager to see what our new spectrum helps them discover,” said Yurchenko.

The tool has already successfully reproduced the way in which methane absorbs light in brown dwarfs, and helped correct our previous measurements of exoplanets. For example, Yurchenko and colleagues found that the hot Jupiter, HD 189733b, a well-studied exoplanet 63 light-years from Earth, might have 20 times more methane than previously thought.

The paper has been published in the Proceedings of the National Academy of Sciences and may be viewed here.

Shannon Hall

Shannon Hall is a freelance science journalist. She holds two B.A.'s from Whitman College in physics-astronomy and philosophy, and an M.S. in astronomy from the University of Wyoming. Currently, she is working toward a second M.S. from NYU's Science, Health and Environmental Reporting program. You can follow her on Twitter @ShannonWHall.

Recent Posts

Flowing Martian Water was Protected by Sheets of Carbon Dioxide

Mars' ancient climate is one of our Solar System's most perplexing mysteries. The planet was…

10 hours ago

Japan Launches the First Wooden Satellite to Space

Space debris, which consists of pieces of spent rocket stages, satellites, and other objects launched…

11 hours ago

You Can Build a Home Radio Telescope to Detect Clouds of Hydrogen in the Milky Way

If I ask you to picture a radio telescope, you probably imagine a large dish…

14 hours ago

A Space Walking Robot Could Build a Giant Telescope in Space

The Hubble Space Telescope was carried to space inside the space shuttle Discovery and then…

2 days ago

New Report Details What Happened to the Arecibo Observatory

In 1963, the Arecibo Observatory became operational on the island of Puerto Rico. Measuring 305…

2 days ago

We Understand Rotating Black Holes Even Less Than We Thought

The theory of black holes has several mathematical oddities. Recent research shows our understanding of…

3 days ago