Getting to Know Comet 67P/Churyumov-Gerasimenko

We’re finally getting to know the icy nucleus behind comet 67P/Churyumov-Gerasimenko. For all the wonder that comets evoke, we on Earth never see directly what whips up the coma and tail. Even professional telescopes can’t burrow through the dust and vapor cloaking the nucleus to distinguish the clear outline of a comet’s heart. The only way to see one is to fly a camera there.

Asteroids we’ve seen up close show cratered surfaces similar to yet different from much of the cratering so far seen on comets. Not to scale. Credit: NASA except for Steins (ESA)

Rosetta took 10 years to reach 67P/C-G, a craggy, boot-shaped body that resembles an asteroid in appearance but with key differences. Asteroids shown in close up photos often display typical bowl-shaped impact craters. From the photos to date, 67P/C-G’s ‘craters’ look shallow and flat in comparison. Were they impacts smoothed by ice flows over time? Did some of the dust and vapor spewed by the comet settle back on the surface to partially bury and soften the landscape?

Comet 81P/Wild 2 photographed during the Stardust mission in 2004. Wild 2 measures 1.03 x 1.24 x 1.71 miles and goes around the sun once every 6.4 years. Its surfaced is riddled with flat-bottomed depressions some of which may also vent gas from vaporizing ice. Click for more 81P/Wild 2 photos. Credit: NASA

While 67P is doubtless its own comet, it does share certain similarities with Comet 81P/Wild including at least a few crater-like depressions seen during NASA’s Stardust mission. In January 2004, the spacecraft gathered photos, measurements and dust samples during its brief flyby of the nucleus. Photos reveal pinnacles, flat-bottomed depressions and bright plumes or jets of vaporizing ice.

Some of the comets we’ve seen close up through the eyes of visiting spacecraft. Credit: NASA

In a 2004 paper by Donald Brownlee and team, the group experimentally reproduced the flat-floored craters by firing projectiles into resin-coated sand baked a bit to make it cohere. Their results suggest the craters formed from impacts in loosely compacted material under the low-gravity conditions typical of small objects like comets. To quote the paper: “Most disrupted material stayed inside the cavity and formed a flat-floored deposit and steep cliffs formed the rim.” Icy materials mixed with dust may have also played a role in their appearance and other crater-like depressions called pit-halos.

Latest image of the comet taken by Rosetta’s navigation camera from a distance of only 311 miles (500 km) on August 2, 2014. The comet’s larger size in the field means fewer artifacts. Credit: ESA/Rosetta/Navcam

Speculation isn’t science, so I’ll stop here. So much more data will be streaming in soon, we’ll have our hands full. On Wednesday, August 6th, Rosetta will enter orbit around the nucleus and begin detailed studies that will continue through December 2015. Studying the new pictures now arriving daily, I’m struck by the dual nature of comets. We see an ancient landscape and yet one that looks strangely contemporary as the sun vaporizes ice, reworking the terrain like a child molding clay.

Comet 67P/Churyumov-Gerasimenko is well-placed in the mid-summer sky in Sagittarius but impossibly faint visually. Dave Herald’s photo taken on August 21, 2014 shows only a tiny fuzz of magnitude +21. Credits: Dave Herald;  Stellarium
Bob King

I'm a long-time amateur astronomer and member of the American Association of Variable Star Observers (AAVSO). My observing passions include everything from auroras to Z Cam stars. I also write a daily astronomy blog called Astro Bob. My new book, "Wonders of the Night Sky You Must See Before You Die", a bucket list of essential sky sights, will publish in April. It's currently available for pre-order at Amazon and BN.

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

3 minutes ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

52 minutes ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

1 day ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

1 day ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago