Watch This Prototype Mars Spacecraft Spin During A Supersonic Test

Feeling dizzy? This is what the view looked like from NASA’s next-generation Mars spacecraft as the flying saucer-shaped vehicle did a test in June.

According to the agency, the Low-Density Supersonic Decelerator (LDSD) met all of its test objectives even though the parachute didn’t deploy as planned. And in a briefing today (Aug. 8), agency officials said they have a plan to deal with the issue for the next flight, which will be in summer 2015.

“We are going to change the shape. We are going to have some structural reinforcements to make it stronger in areas that it is particularly sensitive, to
improve deployment of parachute,” said Ian Clark, the principal investigator of LDSD at NASA’s Jet Propulsion Laboratory.

With every robotic Mars mission, it appears, NASA is trying to land bigger and bigger payloads on the surface of the planet. That’s because the rovers have become more powerful over time. The latest vehicle, the Mars Science Laboratory (better known as Curiosity) included a unique crane system that was so innovative that NASA dubbed the final landing sequence “seven minutes of terror.

The LDSD test in late June saw the craft soar to 120,000 feet (36,576 meters). The vehicle was then cut from the balloon at this altitude, which has densities similar to what you would expect in the upper Mars atmosphere, to see how it would do during a simulated descent to the Red Planet.

“We’re really happy. We have tons and tons of data,” said Mark Adler, the project manager for LDSD at JPL. “Nothing makes us happier than data.”

Besides the busted parachute, officials said the test showed the vehicle was performing to expectations — and sometimes, even better than expected. The shape held within 1/8 of an inch (0.32 cm), which they said was very good for a 20-foot (6-meter) vehicle. Drag and stability happened as they thought. The balloon that deployed the parachute also did well, they said.

A timeline of events for a test of NASA’s Low-Density Supersonic Decelerator (LDSD). Credit: NASA/JPL-Caltech

The parachute, however, developed tears very close to the beginning of its deployment, which officials said was due to a lack of understanding about how parachutes perform at supersonic velocities.

While the LDSD has not been assigned to a particular mission yet, officials said it would be useful to land missions more accurately on the Red Planet in spots that would be more difficult to reach. It also would be useful for a future human mission, whenever that happens, because the equivalent of “two-storey condominiums”would be needed, said Adler.

The project has been in the works since September 2010, and this summer’s test occurred a year ahead of schedule.

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Colliding Stars, Stellar Siphoning, and a now a “Blue Lurker.” This Star System has Seen it All

Triple star systems are more common than might be imagined - about one in ten…

7 minutes ago

Recent Observations Challenge our Understanding of Giant Black Holes

Black holes are among the most mysterious and powerful objects in the Universe. These behemoths…

13 hours ago

An Even Ghostlier Neutrino May Rule the Universe

Strange “right-handed” neutrinos may be responsible for all the matter in the universe, according to…

14 hours ago

The Gaia Mission’s Science Operations are Over

The ESA has announced that Gaia's primary mission is coming to an end. The spacecraft's…

16 hours ago

About a Third of Supermassive Black Holes are Hiding

Supermassive black holes can have trillions of times more mass than the Sun, only exist…

18 hours ago

The First Supernovae Flooded the Early Universe With Water

Water is made of hydrogen and oxygen: H2O. The H was formed during the Big…

23 hours ago