Did that impact 4.1 billion years ago ever leave a scar! Here, a Mars Express photo from late 2013 (and just highlighted now) shows off craters in Hellas Basin, which was formed when the planets in our young Solar System were under intense bombardment from leftover remnants.
But over time, wind and erosion on Mars have changed the nature of this basin, the German Space Agency explained.
“Over time, the interior of Hellas Planitia has been greatly altered by geological processes,” the German Space Agency stated.
“The wind has blown dust into the basin, glaciers and streams have transported and deposited sediment, and volcanoes have built up layers of low-viscosity lava on the floor of Hellas. Despite its exposure to erosion and coverage by deposits for a long period of time, it is the best-preserved large impact basin on Mars.”
What’s more, Hellas is so deep (four kilometers or 2.5 miles) that scientists suspect water could be stable near the bottom of the pit. That’s because the combination of pressure and temperature there could possibly support water for some time, which is different from much of the rest of Mars where the pressure is too thin for water to do much but evaporate.
Source: German Space Agency
In April 2019, the Event Horizon Telescope (EHT) collaboration made history when it released the first-ever…
Almost every large galaxy has a supermassive black hole churning away at its core. In…
Through the Artemis Program, NASA will send the first astronauts to the Moon since the…
New research suggests that our best hopes for finding existing life on Mars isn’t on…
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…