Small Spacecraft Ejected from Space Station Airlock Will Provide Same-Day, On-Demand Parcel Delivery

Getting to the International Space Station is no easy task. Generally speaking, it involves loading up a space capsule with several tons of cargo and then expending millions of liters of fuel to get it into orbit. This process is time consuming and very expensive. And what if astronauts want to send some things back? Currently, their only option for return capability is provided by the same cargo capsules that are sent up to them.

Which means that the only way the ISS can send things back to Earth is for us to spend several million dollars sending a return vehicle up to them. Luckily, this is about to change, thanks to a project known as the Terrestrial Return Vehicle (TRV).

The TRV represents a collaborative effort between NASA and CASIS, the non-profit Center for the Advancement of Science in Space, which was recently endowed  with the responsibility of making sure that we make good use of the US laboratory aboard the ISS. Towards this end, they have contracted with Intuitive Machines – a Texas-based private space firm – to create a return vehicle that will enable the on-demand, rapid return of experiments from the International Space Station (ISS) National Laboratory.

“I believe with this new ‘on demand’ delivery capability for returning scientific samples to earth we will extend the viability of the ISS National Laboratory as a research platform for commercial benefit,” Steve Altemus, the president of Intuitive Machines, told Universe Today via email. “The principle investigators and scientists engaged in microgravity research in space can now begin to imagine new and different experiments and methodologies enabled by returning samples on a nearly daily basis and landing them precisely and gently on the Earth.”

The proposed TRV is a small, wingless capsule that can be loaded up with samples and ejected from the airlock in the Japanese Experiment Module (JEM), guaranteeing delivery back to Earth in under 24 hours. From the outside, the design looks a little like the Space Shuttle, or the Boeing X-37B space plane. Minus the stubby wings, of course.

The International Space Station. Credit: NASA

For the ISS crews, having these vehicles on hand will be a major boon for research, allowing for the delivery of critical or perishable samples to Earth laboratories in a timely manner. A number of these TRV’s will be shipped to the ISS – presumably as part of a normal cargo run using a SpaceX Dragon capsule.

Once there, the process for using them to make deliveries will be quite straightforward. First, astronauts will load them with the scientific samples they intend to send home. Then, they will push them out the airlock and shunt them out into space using the Station’s Japanese-made robotic arm.

The TRV will then return to Earth much like any other spacecraft, descending through the atmosphere and eventually deploying a parachute to slow it down from supersonic speeds. Another larger parachute will deploy once it’s closer to the ground and bring it safely down to a landing site in Utah.

This return trip will take six hours, and since the ISS orbits the Earth about 15 times a day, the total delivery time should always be less than 24 hours. This will be especially useful considering that a number of scientific experiments take place on the International Space Station, mainly because the zero-gravity environment is more ideal for growing cell cultures in three dimensions.

Getting a TRV from the Space Station back to Earth. Credit: Intuitive Machines (some images courtesy of NASA)

“The International Space Station, with its unique microgravity laboratories and crew, enables research over a wide range of disciplines from physics through biology,” said Dr. David Wolf, a research scientist and former astronaut. “This small payload return capability will provide controlled conditions and flexible choices for timely sample analysis. The scientific team will be able to much more efficiently adjust experimental parameters in response to results, exploit unique results, and correct problems encountered.”

In short, if astronauts are busy testing techniques for bioprinting organs or developing new types of pharmaceuticals, they would certainly prefer to send the samples produced straight back to Earth rather than being forced to wait weeks for a cargo ship to arrive.

However, beyond facilitating the research efforts of astronauts, Intuitive Machines sees the TRV as a means of enabling new and exciting research aboard the ISS National Laboratory, as well as opening the door for commercial ventures in space.

Currently, Intuitive Machines plans to provide its TRV technology to a wide range of customers – including scientific, academic, commercial, and government interests. It is their hope that the new same-day capability will enable increased utilization of the ISS as a national laboratory, and improve the commercialization opportunities of experiments for terrestrial benefit.

The first batch of TRVs is scheduled to be sent up to the ISS in 2016. At first, they will be used strictly to return scientific samples – but apparently, a version that would be capable of returning live rodents is also in the works.

Further Reading: Intuitive Machines

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

2 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

14 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

15 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

16 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

18 hours ago

Uranus is Getting Colder and Now We Know Why

Uranus is an oddball among the Solar System's planets. While most planets' axis of rotation…

21 hours ago