Titanic Liquid: Blinding ‘Sunglint’ Shines On Saturn’s Swampy Moon

See that yellow smudge in the image above? That’s what the Sun looks like reflecting off the seas of Titan, that moon of Saturn that excites astrobiologists because its chemistry resembles what early Earth could have looked like. This image represents the first time this “sunglint” and Titan’s northern polar seas have been captured in one mosaic, NASA said.

What’s more, if you look closely at the sea surrounding the sunlight, you can see what scientists dub a “bathtub ring.” Besides looking pretty, this image from the Cassini spacecraft shows the huge sea (called Kraken Mare) was actually larger at some point in Titan’s past.

“The southern portion of Kraken Mare … displays a ‘bathtub ring’ — a bright margin of evaporate deposits — which indicates that the sea was larger at some point in the past and has become smaller due to evaporation,” NASA stated. “The deposits are material left behind after the methane and ethane liquid evaporates, somewhat akin to the saline crust on a salt flat.”

In this near-infrared global mosaic of Titan, sunglint and the moon’s polar seas are visible above the shadow. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho

The sunlight was so bright that it saturated the detector on Cassini that viewed it, called the Visual and Infrared Mapping Spectrometer (VIMS) instrument. The sun was about 40 degrees above the horizon of Kraken Mare then, which is the highest ever observed on Titan.

The T-106 flyby Oct. 23 was the second-to-last closeup view Cassini will have of Titan this year. The spacecraft has been circling Saturn’s system for more than 10 years, and is now watching Titan (and Saturn’s) northern hemisphere enter summer.

Titan is covered in a thick, orangey atmosphere that hid its surface from scientists the first time a spacecraft zoomed by it in the 1980s. Subsequent exploration (most especially by Cassini and a short-lived lander called Huygens) have revealed dunes on and near the equator and at higher altitudes, lakes of methane and ethane.

Source: Jet Propulsion Laboratory

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Webb Observes Protoplanetary Disks that Contradict Models of Planet Formation

The James Webb Space Telescope (JWST) was specifically intended to address some of the greatest…

14 hours ago

James Webb’s Big Year for Cosmology

The James Webb Space Telescope was designed and built to study the early universe, and…

2 days ago

A Mission to Dive Titan’s Lakes – and Soar Between Them

Titan is one of the solar system's most fascinating worlds for several reasons. It has…

2 days ago

Top Astronomy Events for 2025

Catching the best sky watching events for the coming year 2025. Comet C/2023 A3 Tsuchinshan-ATLAS…

2 days ago

Is the Universe a Fractal?

For decades cosmologists have wondered if the large-scale structure of the universe is a fractal:…

3 days ago

How Did Black Holes Grow So Quickly? The Jets

A current mystery in astronomy is how supermassive black holes gained so much heft so…

3 days ago