NASA’s Phoenix Mars Lander is right on schedule for its 2008 visit with the Red Planet. But between now and then, it’s got some work to do. Late last week it completed its first task, performing a course correction to bring into a perfect trajectory to reach Mars; it has 5 more to do over the course of the mission.
Phoenix is currently hurtling towards Mars at a velocity of about 33,180 metres per second (74,200 mph) in relation to the Sun. This first trajectory maneuver tweaked its velocity by about 18.5 metres per second (41 mph). The spacecraft fired its four thrusters for a total of 3 minutes and 17 seconds to make the adjustment.
It sounds like everything went according to plan. According to Joe Guinn, Phoenix mission system manager at NASA’s Jet Propulsion Laboratory, “all the subsystems are functioning as expected with few deviations from predicted performance.” Yeah… what he said.
The next intentional course correction is scheduled for mid-October.
Believe it or not, Phoenix was launched on an incorrect trajectory intentionally. Without these course corrections, the spacecraft would miss Mars by about 950,000 km (590,000 miles). This was done so that the spacecraft’s third-stage rocket booster won’t hit Mars. With the intentional incorrect trajectory, the third stage will sail by the Red Planet, while Phoenix can still enter its atmosphere. The lander is carefully cleaned to ensure no bacteria reach the Martian surface, while the booster remains contaminated with Earth’s bacteria. We wouldn’t want to infect Mars with our life.
Original Source: NASA News Release
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…
A team of astronomers have detected a surprisingly fast and bright burst of energy from…
Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…
In 1971, the Soviet Mars 3 lander became the first spacecraft to land on Mars,…
Many of the black holes astronomers observe are the result of mergers from less massive…