One big driver in the search for exoplanets is whether life can exist elsewhere in the Universe. In fact, a major goal of the Kepler space telescope is to discover an Earth-like planet in the habitable zone of a star like our Sun.
But what about having two Earths orbiting close to each other for billions of years? Is this even possible? A new study suggests that yes, this could happen. Imagine the implications for planetary searches if a double Earth is possible.
With current technology it’s hard to spot an Earth-sized planet, let alone resolve two, but if such planets exist it presents interesting questions. Could they be habitable? How do they form? More study is needed.
The study says double Earths can happen if they form at least half a Sun-Earth distance from their star. In what scientists say is the first-ever study considering binary Earths they suggest a scenario where two rocky bodies get close to each other early in their Solar System’s formation. They don’t collide (such as what likely formed our Moon), but they’re close enough to be within three or so radii of each other.
“There is a good reason to believe terrestrial binary planetary systems may be possible,” read a press release from the California Institute of Technology. “In a grazing collision the angular momentum is too high to be contained within a single rotating body (it would fission) and if the bodies barely touch then they could retain their identity. However, it requires an encounter where the bodies are initially approaching each other at low enough velocity.”
Scientists simulated these planetary encounters using a simulation, dubbed Smooth Particle Hydrodynamics, which has been used in the past for scenarios such as the collision that created the Moon. The scenarios showed that a collision between two Earth-sized planets would only produce a Moon. However, if the bodies came close enough to produce tidal distortion on each other, the planets could form a binary system.
The research was presented at the Division for Planetary Sciences meeting of the American Astronomical Society this week by undergraduate Keegan Ryan, graduate student Miki Nakajima, and planetary science researcher David Stevenson, all of the California Institute of Technology. A press release did not disclose plans for publication, or if the research is peer-reviewed.
Source: California Institute of Technology
Through the Artemis Program, NASA will send the first astronauts to the Moon since the…
New research suggests that our best hopes for finding existing life on Mars isn’t on…
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…
A team of astronomers have detected a surprisingly fast and bright burst of energy from…
Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…