Categories: CosmologyDark Matter

Macro View Makes Dark Matter Look Even Stranger

We know dark matter exists. We know this because without it and dark energy, our Universe would be missing 95.4% of its mass. What’s more, scientists would be hard pressed to explain what accounts for the gravitational effects they routinely see at work in the cosmos.

For decades, scientists have sought to prove its existence by smashing protons together in the Large Hadron Collider. Unfortunately, these efforts have not provided any concrete evidence.

Hence, it might be time to rethink dark matter. And physicists David M. Jacobs, Glenn D. Starkman, and Bryan Lynn of Case Western Reserve University have a theory that does just that, even if it does sound a bit strange.

In their new study, they argue that instead of dark matter consisting of elementary particles that are invisible and do not emit or absorb light and electromagnetic radiation, it takes the form of chunks of matter that vary widely in terms of mass and size.

As it stands, there are many leading candidates for what dark matter could be, which range from Weakly-Interacting Massive Particles (aka WIMPs) to axions. These candidates are attractive, particularly WIMPs, because the existence of such particles might help confirm supersymmetry theory – which in turn could help lead to a working Theory of Everything (ToE).

According to supersymmetry, dark-matter particles known as neutralinos (aka WIMPs) annihilate each other, creating a cascade of particles and radiation. Credit: Sky & Telescope / Gregg Dinderman.

But so far, no evidence has been obtained that definitively proves the existence of either. Beyond being necessary in order for General Relativity to work, this invisible mass seems content to remain invisible to detection.

According to Jacobs, Starkman, and Lynn, this could indicate that dark matter exists within the realm of normal matter. In particular, they consider the possibility that dark matter consists of macroscopic objects – which they dub “Macros” – that can be characterized in units of grams and square centimeters respectively.

Macros are not only significantly larger than WIMPS and axions, but could potentially be assembled out of particles in the Standard Model of particle physics – such as quarks and leptons from the early universe – instead of requiring new physics to explain their existence. WIMPS and axions remain possible candidates for dark matter, but Jacobs and Starkman argue that there’s a reason to search elsewhere.

“The possibility that dark matter could be macroscopic and even emerge from the Standard Model is an old but exciting one,” Starkman told Universe Today, via email. “It is the most economical possibility, and in the face of our failure so far to find dark matter candidates in our dark matter detectors, or to make them in our accelerators, it is one that deserves our renewed attention.”

After eliminating most ordinary matter – including failed Jupiters, white dwarfs, neutron stars, stellar black holes, the black holes in centers of galaxies, and neutrinos with a lot of mass – as possible candidates, physicists turned their focus on the exotics.

Ongoing experiments at the Large Hadron Collider have so far failed to produce evidence of WIMPs. Credit: CERN/LHC/GridPP

Nevertheless, matter that was somewhere in between ordinary and exotic – relatives of neutron stars or large nuclei – was left on the table, Starkman said. “We say relatives because they probably have a considerable admixture of strange quarks, which are made in accelerators and ordinarily have extremely short lives,” he said.

Although strange quarks are highly unstable, Starkman points out that neutrons are also highly unstable. But in helium, bound with stable protons, neutrons remain stable.

“That opens the possibility that stable strange nuclear matter was made in the early Universe and dark matter is nothing more than chunks of strange nuclear matter or other bound states of quarks, or of baryons, which are themselves made of quarks,” said Starkman.

Such dark matter would fit the Standard Model.

This is perhaps the most appealing aspect of the Macros theory: the notion that dark matter, which our cosmological model of the Universe depends upon, can be proven without the need for additional particles.

Still, the idea that the universe is filled with a chunky, invisible mass rather than countless invisible particles does make the universe seem a bit stranger, doesn’t it?

Further Reading: Case Western

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

Astronomers Find a 3 Million Year Old Planet

Astronomers have just found one of the youngest planets ever. At only 3 million years…

6 hours ago

There was Hot Water on Mars 4.45 Billion Years Ago

Mars formed 4.5 billion years ago, roughly the same time as the Earth. We know…

10 hours ago

Axion Dark Matter May Make Spacetime Ring

Dark matter made out of axions may have the power to make space-time ring like…

14 hours ago

Earth’s Old Trees Keep A Record of Powerful Solar Storms

Most of the time the Sun is pretty well-mannered, but occasionally it's downright unruly. It…

1 day ago

New Supercomputer Simulation Explains How Mars Got Its Moons

One mystery in planetary science is a satisfying origin story for Mars's moons, Phobos and…

1 day ago

The Early Universe May Have Had Giant Batteries of Dust

The largest magnetic fields in the universe may have found themselves charged up when the…

2 days ago