You just know this is going to take some serious computer horsepower. Rochester Institute of Technology’s Center for Computational Relativity and Gravitation was recently awarded $330,000 from the National Science Foundation to simulate collisions between black holes. Dubbed “newHorizons”, this will be a cluster of 85 dual core processors acting like a single large computer. 1.4 terabytes of memory; 36 terabytes of storage. Yowza.
Sorry to geek out there, I’m getting little tired of the computer sitting on my desk right now. But any upgrade I might buy won’t hold a candle to this new supercomputer from the Rochester Institute of Technology.
The project is headed up by Manuela Campanelli, who led her team to solve the 10 equations in Einstein’s theory of general relativity for strong field gravity. She joined forces with physics professor David Merritt, who built the 32-node gravitySimulator, which calculations the gravitational interaction between objects, such as dark matter and galaxies.
As I mentioned in the intro, this new machine will consist of 85 nodes – individual computers with their own memory, processor – which are connected together. The latency, or delay, in communication between the individual computers is so low, that they can act like a single, large supercomputer – but built at a fraction of the cost.
Once newHorizons is built, the development team is expecting it’ll be running 24 hours a day for 5 or 6 years, simulating black hole collisions and mergers. The extra horsepower will allow physicists to simulate more complex interactions with additional variables that would overwhelm other computers.
Original Source: RIT News Release
The black hole information paradox has puzzled physicists for decades. New research shows how quantum…
In April 2019, the Event Horizon Telescope (EHT) collaboration made history when it released the first-ever…
Almost every large galaxy has a supermassive black hole churning away at its core. In…
Through the Artemis Program, NASA will send the first astronauts to the Moon since the…
New research suggests that our best hopes for finding existing life on Mars isn’t on…
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…