Categories: Titan

Titan has Drizzling Methane Rain

If you’re planning a visit to Saturn’s moon Titan, make sure you bring an umbrella. You’ll need it. Not to protect you from water raining down; on frigid Titan, where temperatures dip below 180-degrees Celsius, all the water is completely frozen. No, according to scientists, there’s a steady drizzle of liquid methane coming down in the mornings.

New infrared images gathered by Hawaii’s W.M. Keck Observatory and Chile’s Very Large Telescope show that Titan’s Xanadu region experiences a steady drizzle of methane during its lengthy morning. The concept of morning is a little misleading, since Titan takes about 16 Earth days to complete one rotation. So, the “morning” drizzle actually lasts around 3 Earth days, dissipating around 10:30 a.m. local time.

Astronomers aren’t actually sure if this is a moon-wide phenomenon, or just localized around the Xanadu region of Titan. Even though large lakes and seas have been discovered around the moon’s poles, no process had been discovered that fills them with liquid… until now.

Reporting their findings in the latest issue of the online journal Science Express, researchers from UC Berkeley note that, “widespread and persistent drizzle may be the dominant mechanism for returning methane to the surface from the atmosphere and closing the methane cycle.”

The new Keck/VLT images show a widespread cloud cover of frozen methane at a height of 25 to 35 kilometres. And then there are liquid methane clouds below 20 kilometres, and finally rain falling at the lowest elevations.

The droplets of liquid methane in the rain clouds are 1,000 times larger than water vapour here on Earth, and this surprisingly makes them harder to detect. Since the droplets are larger, but still carry the same amount of moisture, they’re much more spread out, making the clouds extremely diffuse, and nearly invisible.

How much liquid is trapped in the clouds? If you squeezed them all out and spread the liquid across the surface of Titan, it would coat the entire moon to a depth of about 1.5 cm. And that’s actually the same amount as we’d get if you did the same thing with the Earth’s clouds.

Original Source: UC Berkeley News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Scientists Have Figured out why Martian Soil is so Crusty

On November 26th, 2018, NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight)…

4 hours ago

Another Way to Extract Energy From Black Holes?

Black holes are incredible powerhouses, but they might generate even more energy thanks to an…

9 hours ago

Plastic Waste on our Beaches Now Visible from Space, Says New Study

According to the United Nations, the world produces about 430 million metric tons (267 U.S.…

1 day ago

Future Space Telescopes Could be Made From Thin Membranes, Unrolled in Space to Enormous Size

As we saw with JWST, it's difficult and expensive to launch large telescope apertures, relying…

1 day ago

Voyager 1 is Forced to Rely on its Low Power Radio

Voyager 1 was launched waaaaaay back in 1977. I would have been 4 years old…

2 days ago

Webb Confirms a Longstanding Galaxy Model

The spectra of distant galaxies shows that dying sun-like stars, not supernovae, enrich galaxies the…

2 days ago