Categories: Black Holes

Black Holes Linked to Cosmic Rays

You know that big list of unsolved mysteries in astronomy? Well, you can remove, “what causes the highest energy cosmic rays?” Thanks to new research using the Pierre Auger Cosmic Ray Observatory in South America, the answer appears to be: supermassive black holes.

High energy cosmic rays are actually particles – protons mostly – accelerated to tremendous velocities. When they crash into the Earth’s atmosphere, they explode in a spray of energy and sub-particles that can be detected here on the surface. Fortunately our atmosphere protects us from damage, but out in space, they’re a real threat.

Just a single particle can have the same energy as fast moving tennis ball.

Astronomers have been wondering for years how particles can get boosted to such high energy levels. A massive team of 370 researchers from 17 countries have been working on the answer using the newly developed Pierre Auger Cosmic Ray Observatory, nestled in the mountains of South America.

The observatory is actually an array of detectors spread out over a 3,000 km2 area. As the cosmic rays collide with the atmosphere, the resulting spray of particles are caught by the detectors, which house large tanks of water. The detectors are so sensitive, they can detect a different in timing, which allow astronomers to triangulate the direction the cosmic ray came from. The particles are flung with such energy that they point back to their galaxies, like bullets coming from a gun.

Before the Pierre Auger observatory, cosmic ray detections were rare. Astronomers just didn’t have enough data to know where they were coming from. But over the last 3 years, the observatory has recorded a million cosmic rays, including 80 of the highest energy.

Astronomers now know that cosmic rays don’t come from all regions of the sky, but they’re shot out from actively feeding supermassive black holes.

The exact process that creates the cosmic rays isn’t fully understood, but astronomers think that the environment around an active supermassive black hole is ferocious, to say the least. Powerful magnetic fields are generated, which can act like natural particle accelerators, pushing protons to energy levels much higher than anything physicists could recreate with our technology.

Original Source: University of Chicago News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

How Did Black Holes Grow So Quickly? The Jets

A current mystery in astronomy is how supermassive black holes gained so much heft so…

7 hours ago

Quantum Correlations Could Solve the Black Hole Information Paradox

The black hole information paradox has puzzled physicists for decades. New research shows how quantum…

23 hours ago

M87 Releases a Rare and Powerful Outburts of Gamma-ray Radiation

In April 2019, the Event Horizon Telescope (EHT) collaboration made history when it released the first-ever…

1 day ago

Astronomers Find a Black Hole Tipped Over on its Side

Almost every large galaxy has a supermassive black hole churning away at its core. In…

1 day ago

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

2 days ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

2 days ago