When the first humans travel to Mars, the journey will be dangerous. Perhaps the most dangerous part will be the landing; the thin Martian atmosphere makes it extremely difficult to slow down a heavy spacecraft carrying humans. To minimize the danger, the first missions to Mars might not have people land on the surface at all. Instead, they might orbit the Red Planet, and control virtual robots working down below. Just imagine how much science Martian rovers controlled by humans could get done, all from the safety of orbit – at a fraction of the cost of actually setting foot on the planet.
“It is a cheaper, simpler, and safer way to explore, and hence it will be a faster way to explore. Virtual exploration will have the excitement of being there, at a fraction of the price, ” Dr. Landis wrote in a paper titled, Teleoperation from Mars orbit: A proposal for human exploration, published in the May 2007 issue of Acta Astronautica.
A mission to Mars using teleoperation would involve robots landed on the surface which would be controlled directly by astronauts in a spacecraft orbiting the planet. The robots would be more sophisticated than current rovers, with hands and bodies that would mimic the movements of a human being, thus allowing the operator to control the robot using a virtual reality interface. The current lag between the commands from the Earth and their reception by the rovers on Mars can be several minutes, but an orbiter controlling the robots would experience almost no delay at all.
Unlike humans, the Robonauts wouldn’t need a habitat on the surface, and could be left there. They could also be equipped with a large variety of scientific equipment, and wouldn’t need to rest, making the exploration of the surface faster and more efficient.
Sure, it seems a little silly to send humans all the way out to Mars without actually landing them on the surface, but doing so poses many challenges that are eliminated by a teleoperation mission. To design and provide fuel for a vehicle to land on the surface, and then take off, is very expensive both in terms of weight and money.
We still don’t know if there is life on the surface of Mars, so being very careful not to contaminate the surface with Earth microbes is also important. Any missions that land on the surface have the potential of leaving life from our own planet there, making it difficult to later determine the origin of life on Mars – if any exists – and Earth microbes could possibly wipe out any Martian life.
Also, the effect potential life on Mars could have on human beings is unknown, so it is better to be safe than risk the lives of astronauts through exposure to possibly harmful alien life.
Teleoperated missions would expand the areas of Mars that could be explored, since the issue of safety is not as much of concern when using robots.
“Landing sites for a human mission are likely to be scientifically “boring” sites, featuring flat surfaces with an absence of boulders, cliffs, channels, craters or mountains. Use of telerobots lowers risk, and thereby allows dangerous exploration,” Dr. Landis wrote.
Teleoperation wouldn’t be the end, of Mars exploration, though; it’s merely a step towards landing humans on the planet to ensure the safety of astronauts and gain better information on how to conduct future missions.
Source: Acta Astronautica
On November 26th, 2018, NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight)…
Black holes are incredible powerhouses, but they might generate even more energy thanks to an…
According to the United Nations, the world produces about 430 million metric tons (267 U.S.…
As we saw with JWST, it's difficult and expensive to launch large telescope apertures, relying…
Voyager 1 was launched waaaaaay back in 1977. I would have been 4 years old…
The spectra of distant galaxies shows that dying sun-like stars, not supernovae, enrich galaxies the…