Categories: Aeronautics

Dramatic Imagery from NASA of Supersonic Shock Waves

NASA is using a 150-year-old photographic technique with a few 21st century tweaks to capture unique and stunning images of the shockwaves created by supersonic aircraft.

Called schlieren imagery, the technique can be used to visualize supersonic airflow with full-scale aircraft in flight. Usually, this can only be done in wind tunnels using scale models, but being able to study real-sized aircraft flying through Earth’s atmosphere provides better results, and can help engineers design better and quieter supersonic planes.

And a side benefit is that the images are amazing and dramatic, creating a little “shock” and awe.

This schlieren image dramatically displays the shock wave of a supersonic jet flying over the Mojave Desert. Researchers used NASA-developed image processing software to remove the desert background, then combined and averaged multiple frames to produce a clear picture of the shock waves.
Credit: NASA.

Earlier this year, NASA released some schlieren imagery taken with a high-speed camera mounted on the underside of a NASA Beechcraft B200 King Air, which captured images at 109 frames per second while a supersonic aircraft passed several thousand feet underneath over a speckled dessert floor. Special image processing software was used to remove the desert background, then combine and average multiple frames, which produces a clear picture of the shock waves. This is called air-to-air schlieren.

“Air-to-air schlieren is an important flight-test technique for locating and characterizing, with high spatial resolution, shock waves emanating from supersonic vehicles,” said Dan Banks, the principal investigator on the project, being done at NASA’s Armstrong Flight Research Center at Edwards Air Force Base. “It allows us to see the shock wave geometry in the real atmosphere as the target aircraft flies through temperature and humidity gradients that cannot be duplicated in wind tunnels.”

But now they’ve started using a technique that might provide better results: using the Sun and Moon as a lit background. This backlit method is called Background-Oriented Schlieren using Celestial Objects, or BOSCO.

The speckled background or a bright light source is used for visualizing aerodynamic flow phenomena generated by aircraft or other objects passing between the camera and the backdrop.

This schlieren image of shock waves created by a T-38C in supersonic flight was captured using the sun’s edge as a light source and then processed using NASA-developed code.
Credit: NASA.

NASA explains the technique:

“Flow visualization is one of the fundamental tools of aeronautics research, and schlieren photography has been used for many years to visualize air density gradients caused by aerodynamic flow. Traditionally, this method has required complex and precisely aligned optics as well as a bright light source. Refracted light rays revealed the intensity of air density gradients around the test object, usually a model in a wind tunnel. Capturing schlieren images of a full-scale aircraft in flight was even more challenging due to the need for precise alignment of the plane with the camera and the sun.”

Then, there are variations on this technique. One recent demonstration used Calcium-K Eclipse Background Oriented Schlieren (CaKEBOS). According to Armstrong principal investigator Michael Hill, CaKEBOS was a proof of concept test to see how effectively the Sun could be used for background oriented schlieren photography.

Using the solar disk as a backdrop, its details revealed by a calcium-K optical filter, researchers processed this image to reveal shock waves created by a supersonic T-38C.
Credit: NASA.

“Using a celestial object like the sun for a background has a lot of advantages when photographing a flying aircraft,” Hill said. “With the imaging system on the ground, the target aircraft can be at any altitude as long as it is far enough away to be in focus.”

Researchers found the ground-based method to be significantly more economical than air-to-air methods, since you don’t have to have a second aircraft carrying specially mounted camera equipment. The team said they can use off-the-shelf equipment.

Schlieren imagery was originally invented in 1864 by German physicist August Toepler.

Find out more about the air-to-air technique here and the BOSCO techniques here.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

57 minutes ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

2 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

1 day ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

1 day ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago