Categories: AstronomyMissions

Supernova Generates Enough Dust for 10,000 Earths

My kids find it fascinating that the gold in the ring on my finger was formed in an instant when a massive star detonated in a supernova explosion. But it’s not just the heavier elements that get produced in a supernova, there’s also dust. Lots and lots of dust that can eventually collect together into new planets. And according to NASA’s Spitzer Space Telescope, a typical supernova remnant called Cassiopeia A contains enough dust for 10,000 Earths.

This discovery helps solve one of the outstanding mysteries in astronomy: where did all the dust from the early Universe come from? After the Big Bang, the Universe was only made of hydrogen and helium, and a few trace heavier elements. The first stars formed from this primordial material, and then exploded as supernovae, producing the first heavier elements and the dust needed to make terrestrial planets.

Astronomers always thought that supernovae were prime contributors, recycling material in generation after generation, but they weren’t sure – until now.

Another source of this dust seems to be highly energetic black holes, called quasars, which might be firing out high speed jets and dust to seed solar systems.

The Spitzer observations of Cassiopeia A, located about 11,000 light-years away, showed that the warm and cold dust ejected during the supernovae explosion adds up to about 3% the mass of the Sun.

Their observations show that the dust contains proto-silicates, silicon dioxide, iron oxide, pyroxene, carbon, aluminium oxide and other compounds. You could fashion 10,000 planets with the mass of the Earth with that much material.

Although Cassiopeia A is nearby, and not one of those first stars, it wasn’t working with the same raw primordial materials. But the research shows that exploding massive stars do a fine job of turning raw hydrogen and helium into the dust needed to form planets like Earth.

Original Source: Spitzer News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

15 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

16 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

2 days ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

3 days ago