My kids find it fascinating that the gold in the ring on my finger was formed in an instant when a massive star detonated in a supernova explosion. But it’s not just the heavier elements that get produced in a supernova, there’s also dust. Lots and lots of dust that can eventually collect together into new planets. And according to NASA’s Spitzer Space Telescope, a typical supernova remnant called Cassiopeia A contains enough dust for 10,000 Earths.
This discovery helps solve one of the outstanding mysteries in astronomy: where did all the dust from the early Universe come from? After the Big Bang, the Universe was only made of hydrogen and helium, and a few trace heavier elements. The first stars formed from this primordial material, and then exploded as supernovae, producing the first heavier elements and the dust needed to make terrestrial planets.
Astronomers always thought that supernovae were prime contributors, recycling material in generation after generation, but they weren’t sure – until now.
Another source of this dust seems to be highly energetic black holes, called quasars, which might be firing out high speed jets and dust to seed solar systems.
The Spitzer observations of Cassiopeia A, located about 11,000 light-years away, showed that the warm and cold dust ejected during the supernovae explosion adds up to about 3% the mass of the Sun.
Their observations show that the dust contains proto-silicates, silicon dioxide, iron oxide, pyroxene, carbon, aluminium oxide and other compounds. You could fashion 10,000 planets with the mass of the Earth with that much material.
Although Cassiopeia A is nearby, and not one of those first stars, it wasn’t working with the same raw primordial materials. But the research shows that exploding massive stars do a fine job of turning raw hydrogen and helium into the dust needed to form planets like Earth.
Original Source: Spitzer News Release
Like a performer preparing for their big finale, a distant star is shedding its outer…
For a little over a month now, the Earth has been joined by a new…
Despite decades of study, black holes are still one of the most puzzling objects in…
74 million kilometres is a huge distance from which to observe something. But 74 million…
Astronomers have only been aware of fast radio bursts for about two decades. These are…
How do you weigh one of the largest objects in the entire universe? Very carefully,…