Greedy black holes can only consume so much material. The leftover matter backs up into an accretion disk surrounding the black hole. The pull of the black hole is so strong that flashes of radiation emitted from this accretion disk might need to make several orbits around the black hole before it can actually escape the gravitational pull. And these echoes might serve as a probe, allowing astronomers to understand the nature of the black hole itself.
Keigo Fukumura and Demosthenes Kazanas from NASA’s Goddard Space Flight Center revealed their theoretical research at the Winter meeting of the American Astronomical Society.
“The light echoes come about because of the severe warping of spacetime predicted by Einstein,” said Fukumura. “If the black hole is spinning fast, it can literally drag the surrounding space, and this can produce some wild special effects.”
Black holes are surrounded by a disk of searing hot gas rotating at close to the speed of light. A black hole can only consume material so quickly, so any additional matter backs up into this accretion disk. The material in these disks can form hot spots which emit random bursts of X-rays.
When the researchers accounted for the predictions made by Einstein’s general theory of relativity, they realized that the severe warp of spacetime can actually change the path X-rays take as they escape the grasp of the black hole. The X-rays can actually be delayed, depending on the position of the black hole, the position of the flare, and Earth.
If the black hole is rotating at the most extreme speeds, photons can actually make several orbits around the black hole before escaping.
“For each X-ray burst from a hot spot, the observer will receive two or more flashes separated by a constant interval, so even a signal made up from a totally random collection of bursts from hot spots at different positions will contain an echo of itself,” says Kazanas.
Astronomers watching these flashes will have a powerful observational tool they can use to probe the nature of the black hole. The frequency of the flashes would provide astronomers with an accurate way to measure the mass of the black hole.
Original Source: NASA News Release
Through the Artemis Program, NASA will send the first astronauts to the Moon since the…
New research suggests that our best hopes for finding existing life on Mars isn’t on…
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…
A team of astronomers have detected a surprisingly fast and bright burst of energy from…
Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…