Categories: Astrophotossun

Solar Analemma 2015: A Year-Long Picture

If you took a picture of the Sun every day, always at the same hour and from the same location, would the Sun appear in the same spot in the sky? A very fine image, compiled by astrophotographer Giuseppe Petricca from Italy, proves the answer is no.

“A combination of the Earth’s 23.5 degree tilt and its slightly elliptical orbit combine to generate this figure “8” pattern of where the Sun would appear at the same time throughout the year,” said Petricca.

This pattern is called an analemma, the full version shown below:

A compilation of images of the Sun taken at the same time and place over the course of 2015, as seen from Sulmona, Abruzzo, Italy. Credit and copyright: Giuseppe Petricca.


The analemma is considered by many to be one of the most difficult and demanding astronomical phenomenon to image. Astrophotographers need to dedicate an entire year to the project. It requires diligence to take images 30 to 50 times throughout the year at the same time of day and same location.

It is interesting to note that analemmas viewed from different Earth latitudes have slightly different shapes, as well as analemmas created at different times of the day. Also, analemmas on the other planets have different shapes. Here’s one created by the Opportunity rover (ready more about the Martian analemma here):

The Opportunity rover captured this analemma showing the Sun’s movements over one Martian year. Images taken every third sol (Martian day) between July, 16, 2006 and June 2, 2008. Credit: NASA/JPL/Cornell/ASU/TAMU

If the Earth were not tilted, and if its orbit around the Sun were perfectly circular, then the Sun would appear in the same place in the sky throughout the year. But then, we also wouldn’t have seasonal change, so I vote to keep axial tilt!

The analemma created by Giuseppe Petricca, annotated with the dates each picture of the Sun was taken. Each image of the Sun was taken at the same time and place over the course of 2015, as seen from Sulmona, Abruzzo, Italy. Credit and copyright: Giuseppe Petricca.

In this compilation image, Petricca combined 32 pictures of the Sun taken at 12pm local time throughout the months and seasons, all shot with the same settings and exposure times (ISO 100, f/8.0 and 1/1000″ exposure time).
“I was lucky to have the last year with good sunny skies at the right times, even if some months were really difficult to image,” he explained via email. “The background view is the one from the first picture, January 4th, 2015, after three days of snow.”

Petricca used a Nikon Coolpix P90 Bridge Camera mounted on a fixed tripod, with images taken from a field nearby his home Sulmona, Abruzzo, Central Italy. “To take pictures of the solar disk I used an Astrosolar filter in front of the camera, then I composed the analemma digitally, via Photoshop CC,” he said.

Our David Dickinson has written a great piece explaining the dynamics and history of analemmas, with instructions on how you can compile your own.

Also the the Stanford University Solar Center has a great page about it, with analemmas taken from around the world.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

11 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

12 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

1 day ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago