Categories: AstronomyHubble

Hubble Finds One of the Earliest, Brightest Galaxies in the Universe

By boosting the abilities of Hubble with a gravitational lens telescope provided by nature, astronomers have been able to peer back to the earliest times in the Universe; to see a galaxy just 700 million years after the Big Bang.

The newly forming galaxy (well, it was newly forming 13 billion years ago) is called A1689-zD1, and appears to be undergoing furious levels of star formation. Just a few hundred million years before this, the Universe was in the dark ages, when the Universe’s hydrogen cooled and formed thick clouds of hydrogen. This hydrogen acted like a fog, obscuring everywhere.

Although it’s tremendously powerful, the Hubble Space Telescope wasn’t strong enough to image the galaxy. It took the additional gravity of the nearby Abel 1689 cluster to act as a natural lens and magnify the light coming from A1689-zD1. With this technique, astronomers were able to increase its brightness by a factor of 10.

The hope is that this galaxy will give astronomers valuable insights into the formative years of galaxy birth and evolution. One of these questions is: what ended the dark ages?

“This galaxy presumably is one of the many galaxies that helped end the dark ages,” said astronomer Larry Bradley of Johns Hopkins University in Baltimore, Md., and leader of the study. “Astronomers are fairly certain that high-energy objects such as quasars did not provide enough energy to end the dark ages of the universe. But many young star- forming galaxies may have produced enough energy to end it.”

The studies show that this galaxy is probably a good example of what most galaxies looked like in the early Universe. It’s just a fraction of the mass of the Milky Way, but it has high rates of star formation. Much of this star formation is happening in very tiny regions compared to the size of the final galaxy.

Obviously, with Hubble straining at its limits to see this galaxy at all, it can’t make out individual stars, only knots of the brightest ones. But future telescopes, such as the James Webb Space Telescope, is ideally suited to take a much deeper look at it. It would also make a good target for the Atacama Large Millimeter Array, which will become the most powerful radio telescope in the world when it’s completed in 2012.

Original Source: Hubble News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

An Explanation for Rogue Planets. They Were Eroded Down by Hot Stars

WST recently turned up hundreds of free-floating rogue planets in the Orion Nebula, 42 in…

3 hours ago

CODEX Coronagraph Heads to the ISS on Cargo Dragon

A new space-based telescope aims to address a key solar mystery.

4 hours ago

Flowing Martian Water was Protected by Sheets of Carbon Dioxide

Mars' ancient climate is one of our Solar System's most perplexing mysteries. The planet was…

20 hours ago

Japan Launches the First Wooden Satellite to Space

Space debris, which consists of pieces of spent rocket stages, satellites, and other objects launched…

21 hours ago

You Can Build a Home Radio Telescope to Detect Clouds of Hydrogen in the Milky Way

If I ask you to picture a radio telescope, you probably imagine a large dish…

1 day ago

A Space Walking Robot Could Build a Giant Telescope in Space

The Hubble Space Telescope was carried to space inside the space shuttle Discovery and then…

2 days ago