The Earthly Northern Lights are beautiful and astounding, but when it comes to planetary light shows, what happened at Jupiter in 2011 might take the cake. In 2011, a coronal mass ejection (CME) struck Jupiter, producing x-ray auroras 8 times brighter than normal, and hundreds of times more energetic than Earth’s auroras. A paper in the March 22nd, 2016 issue of the Journal of Geophysical Research gave the details.
The Sun emits a ceaseless stream of energetic particles called the solar wind. Sometimes, the Sun ramps up its output, and what is called a coronal mass ejection occurs. A coronal mass ejection is a massive burst of matter and electromagnetic radiation. Though they’re slow compared to other phenomena arising from the Sun, such as solar flares, CMEs are extremely powerful.
When the CME in 2011 reached Jupiter, NASA’s Chandra X-Ray Observatory was watching, the first time that Jupiter’s X-ray auroras were monitored at the same time that a CME arrived. Along with some very interesting images of the event, the team behind the study learned other things. The CME that struck Jupiter actually compressed that planet’s magnetosphere. It forced the boundary between the solar wind and Jupiter’s magnetic field in towards the planet by more than 1.6 million kilometers (1 million miles.)
The scientists behind this study used the data from this event to not only pinpoint the source of the x-rays, but also to identify areas for follow-up investigation. They’ll be using not only Chandra, but also the European Space Agency’s XMM Newton observatory to collect data on Jupiter’s magnetic field, magnetosphere, and aurora.
NASA’s Juno spacecraft will reach Jupiter this summer. One of its primary missions is to map Jupiter’s magnetic fields, and to study the magnetosphere and auroras. Juno’s results will be fascinating to anyone interested in Jupiter’s auroras.
Here at Universe Today we’ve written about Jupiter’s aurora’s here, coronal mass ejections here, and the Juno mission here.