Since 2000, Elon Musk been moving forward with his vision of a fleet of reusable rockets, ones that will restore domestic launch capability to the US and drastically reduce the cost of space launches. The largest rocket in this fleet is the Falcon Heavy, a variant of the Falcon 9 that uses the same rocket core, with two additional boosters that derived from the Falcon 9 first stage. When it lifts off later this year, it will be the most operational powerful rocket in the world.
More than that, SpaceX intends to make all three components of the rocket fully recoverable. This in turn will mean mean that the company is going to need some additional landing pads to recover them all. As such, the company recently announced that it is seeking federal permission to create second and third landing zones for their incoming rockets on Florida’s Space Coast.
The announcement came on Monday, July 18th, during a press conference at their facility at the Cape Canaveral Air Force Station. As they were quoted as saying by the Orlando Sentinel:
“SpaceX expects to fly Falcon Heavy for the first time later this year. We are also seeking regulatory approval to build two additional landing pads at Cape Canaveral Air Force Station. We hope to recover all three Falcon Heavy rockets, though initially we may attempt drone ship landings [at sea].”
At present, SpaceX relies on both drone ships and their landing site at Cape Canaveral to recover rocket boosters after they return to Earth. Which option they have used depended on how high and how far downrange the rockets traveled. But with this latest announcement, they are seeking to recover all three boosters used in a single Falcon Heavy launch, which could prove to be essential down the road.
Since December, SpaceX has managed to successfully recover five Falcon 9 rockets, both at sea and on land. In fact, the announcement of their intentions to expand their landing facilities on Monday came shortly after a spent Falcon 9 returned to the company’s landing site, shortly after deploying over 2268 kg (5000 lbs) of cargo into space during a nighttime launch.
But the planned launch of the Falcon Heavy – Falcon Heavy Demo Flight 1, which is scheduled to take place this coming December – is expected to break new ground. For one, it will give the private aerospace company the ability to lift over 54 metric tons (119,000 lbs) into orbit, more the twice the payload of a Delta IV Heavy – the highest capacity rocket in service at the moment.
Foremost among these are Elon Musk’s plans to colonize Mars. These efforts will begin in April or May of 2018 with the launch of the Dragon 2 capsule (known as the “Red Dragon”) using a Falcon Heavy. As part of an agreement with NASA to gain more information on Mars landings, the Red Dragon will send a payload to Mars that has yet to be specified.
Beyond that, the details are a bit sketchy; but Musk has indicated that he is committed to mounting a crewed mission to Mars by 2024. And if all goes well with Demo Flight 1, SpaceX expects to follow it up with Falcon Heavy Demo Flight 2 in March of 2017. This launch will see the Falcon Heavy being tested as part of the U.S. Air Force’s Evolved Expendable Launch Vehicle (EELV) certification process.
The rocket will also be carrying some important payloads, such as The Planetary Society’s LightSail 2. This 32 square-meter (344 square-foot) craft, which consists of four ultra-thin Mylar sails, will pick up where its predecessor (the LightSail 1, which was deployed in June 2015) left off – demonstrating the viability of solar sail spacecraft.
Other payloads will include NASA’s Deep Space Atomic Clock and Green Propellant Infusion Mission (GPIM), the US Air Force’s Innovative Space-based radar Antenna Technology (ISAT) satellite, the six Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC-2) satellites, and Georgia Tech’s Prox-1 nanosatellite, which will act as the LightSail 2’s parent sattelite.
The Falcon Heavy boasts three Falcon 9 engine cores, each of which is made up of 9 Merlin rocket engines. Together, these engines generate more than 2.27 million kg (5 million pounds) of thrust at liftoff, which is the equivalent of approximately eighteen 747 aircraft. Its lift capacity is also equivalent to the weight of a fully loaded 737 jetliner, complete with passengers, crew, luggage and fuel.
The Saturn V rocket – the workhorse of the Apollo Program, and which made its last flight in 1973 – is only American rocket able to deliver more payload into orbit. This is not surprising, seeing as how the Falcon Heavy was specifically designed for a new era of space exploration, one that will see humans return to the Moon, go to Mars, and eventually explore the outer Solar System.
Fingers crossed that everything works out and the Falcon Heavy proves equal to the enterprise. The year of 2024 is coming fast and many of us are eager to see boots being put to red soil! And be sure to enjoy this animation of the Falcon Heavy in flight:
Further Reading: Orlando Sentinel
Sometimes images are just too small, like this one here – “Chart comparing SpaceX’s Falcon 9 and Falcon Heavy” (in both email and website versions). I do not see a way to enlarge it to read what’s there. If you can fix it, not just here, but in all articles where there is something to read from the image, it will be great. Thanks!
if using windows, right click on the image, select “save as” and save as a jpeg on your desktop. you can then open the image and zoom in.
And have you tried that solution with the images in this article? Because the text is still too small. And therefore not a valid answer.
As Keatah said, but I will add – right click, open in new tab, hold down CTRL and roll mouse scroller will zoom the image, but still, it is not readable due to too small resolution. Cmon, it is the 21st century, we have huge hard drives, huge bandwidths and really I see no reason to use the image of 100×200 pixels.
Regarding reading the text of the image? It may not be elegant but if you just follow this link you should be able to see the specs of the Falcon Heavy just fine: http://spaceflightnow.com/wp-content/uploads/2016/05/spacex_pricing.jpg
It seems to actually display a small version of the image. But if you click on it you’ll see the larger.
Jeez… it’s all on the SpaceX website! 😉
The Falcon Heavy booster re-entry(s) will produce 3 sonic booms as they come in? The last or highest booster sounding off some minutes after the first two. Due to the late night launch of this last flight the return sonic booms were not exactly appreciated by some but orbital constraints set the timing…
I wonder what the db levels were like and how they compared to say a Saturn V launch?
Stay tuned… 🙂