Categories: AstronomySpitzer

Time Traveling With Spitzer

While time travel is seemingly impossible, we can actually look back in time with our telescopes to learn about the conditions of our universe in times past. The Spitzer Space Telescope has found some very dim and distant galaxies located at the edge of our universe that have never been seen before. Approximately 12.5 billion light-years away from Earth, we’re seeing these galaxies as when our universe was just one billion years old. With Spitzer’s infrared capability, astronomers have been able to take infrared portraits and even “weigh” many of these early galaxies. “Understanding the mass and chemical makeup of the universe’s first galaxies and then taking snapshots of galaxies at different ages, gives us a better idea of how gas, dust and metals– the material that went into making our Sun, solar system, and Earth –has changed throughout the Universe’s history,” said Spitzer scientist Dr. Ranga Ram Chary.

Unlike the galaxies of today, Chary says that galaxies living in the one billion year old universe were much more pristine. They were comprised primarily of hydrogen and helium gas and contained less than 10% of the heavier elements we see in the local Universe today, and even on Earth. Astronomers have found these distant galaxies were cosmic “lightweights”, or not very massive compared to mature galaxies we see nearby.

“A few billion years after the big bang, 90 percent of the stars being born were occurring in these types of faint galaxies. By identifying this population, we hope to gain insights into the environments where the universe’s first stars formed,” said Chary.

To find these faint galaxies, astronomers followed the lingering afterglow of gamma ray bursts back to their sources. Astronomers believe gamma ray bursts appear when a very massive star dies and becomes a black hole.

The afterglow occurs when energetic electrons spiral around magnetic fields, and release light. In its explosive death, material shooting out of the massive star smashes into surrounding gas. This violent collision heats nearby gas and energizes its electrons.

Once coordinates of the faint galaxies were determined, Chary’s team then used Spitzer’s supersensitive infrared array camera to snap a picture of the faint galaxy. The amount of light from the galaxies allowed Chary to find the mass of the galaxies.

Original News Source: Spitzer Space Telescope Press Release

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

M87 Releases a Rare and Powerful Outburts of Gamma-ray Radiation

In April 2019, the Event Horizon Telescope (EHT) collaboration made history when it released the first-ever…

4 minutes ago

Astronomers Find a Black Hole Tipped Over on its Side

Almost every large galaxy has a supermassive black hole churning away at its core. In…

4 hours ago

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

20 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

21 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

2 days ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago