Categories: CosmologyObserving

13.73 Billion Years – The Most Precise Measurement of the Age of the Universe Yet

NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) has taken the best measurement of the age of the Universe to date. According to highly precise observations of microwave radiation observed all over the cosmos, WMAP scientists now have the best estimate yet on the age of the Universe: 13.73 billion years, plus or minus 120 million years (that’s an error margin of only 0.87%… not bad really…).

The WMAP mission was sent to the Sun-Earth second Lagrangian point (L2), located approximately 1.5 million km from the surface of the Earth on the night-side (i.e. WMAP is constantly in the shadow of the Earth) in 2001. The reason for this location is the nature of the gravitational stability in the region and the lack of electromagnetic interference from the Sun. Constantly looking out into space, WMAP scans the cosmos with its ultra sensitive microwave receiver, mapping any small variations in the background “temperature” (anisotropy) of the universe. It can detect microwave radiation in the wavelength range of 3.3-13.6 mm (with a corresponding frequency of 90-22 GHz). Warm and cool regions of space are therefore mapped, including the radiation polarity.

This microwave background radiation originates from a very early universe, just 400,000 years after the Big Bang, when the ambient temperature of the universe was about 3,000 K. At this temperature, neutral hydrogen atoms were possible, scattering photons. It is these photons WMAP observes today, only much cooler at 2.7 Kelvin (that’s only 2.7 degrees higher than absolute zero, -273.15°C). WMAP constantly observes this cosmic radiation, measuring tiny alterations in temperature and polarity. These measurements refine our understanding about the structure of our universe around the time of the Big Bang and also help us understand the nature of the period of “inflation”, in the very beginning of the expansion of the Universe.

It is a matter of exposure for the WMAP mission, the longer it observes the better refined the measurements. After seven years of results-taking, the WMAP mission has tightened the estimate on the age of the Universe down to an error margin of only 120 million years, that’s 0.87% of the 13.73 billion years since the Big Bang.

Everything is tightening up and giving us better and better precision all the time […] It’s actually significantly better than previous results. There is all kinds of richness in the data.” – Charles L. Bennett, Professor of Physics and Astronomy at Johns Hopkins University.

This will be exciting news to cosmologists as theories on the very beginning of the Universe are developed even further.

Source: New York Times

Ian O'Neill

[Follow me on Twitter (@astroengine)] [Check out my space blog: Astroengine.com] [Check out my radio show: Astroengine Live!] Hello! My name is Ian O'Neill and I've been writing for the Universe Today since December 2007. I am a solar physics doctor, but my space interests are wide-ranging. Since becoming a science writer I have been drawn to the more extreme astrophysics concepts (like black hole dynamics), high energy physics (getting excited about the LHC!) and general space colonization efforts. I am also heavily involved with the Mars Homestead project (run by the Mars Foundation), an international organization to advance our settlement concepts on Mars. I also run my own space physics blog: Astroengine.com, be sure to check it out!

Recent Posts

Hubble and Webb are the Dream Team. Don't Break Them Up

Many people think of the James Webb Space Telescope as a sort of Hubble 2.…

6 hours ago

Scientists Have Figured out why Martian Soil is so Crusty

On November 26th, 2018, NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight)…

14 hours ago

Another Way to Extract Energy From Black Holes?

Black holes are incredible powerhouses, but they might generate even more energy thanks to an…

20 hours ago

Plastic Waste on our Beaches Now Visible from Space, Says New Study

According to the United Nations, the world produces about 430 million metric tons (267 U.S.…

2 days ago

Future Space Telescopes Could be Made From Thin Membranes, Unrolled in Space to Enormous Size

As we saw with JWST, it's difficult and expensive to launch large telescope apertures, relying…

2 days ago

Voyager 1 is Forced to Rely on its Low Power Radio

Voyager 1 was launched waaaaaay back in 1977. I would have been 4 years old…

3 days ago