Categories: Solar Astronomy

The Sun’s Magnetic Fountains

For you solar observing fans, enjoy the beauty. Over the years both the public and astronomers alike have witnessed the Sun’s volatile and ever-changing atmosphere. Before our eyes huge geysers of hot gas spew into the solar corona at tens of thousands of km per hour. Every few minutes they erupt and reach dynamic proportions. Now a team of scientists have used the Hinode spacecraft to find the origin and progenitor of these fountains – immense magnetic structures that thread through the solar atmosphere.

Today at the Royal Astronomical Society National Astronomy Meeting in Belfast (NAM 2008), team leader Dr. Michelle Murray from the Mullard Space Science Laboratory (MSSL, University College London) presented the latest results from Hinode spacecraft combined with computer emulated solar conditions. Since its launch in October 2006, scientists have been using Hinode to examine the solar atmosphere in extraordinary detail. One of it’s premier instruments is the Extreme Ultraviolet Imaging Spectrometer. The EIS generates images of the Sun and gives information on the speed of the moving gases.

At the core of the solar magnetic field, immense jets of hot gas are forced to the surface through increases in pressure. Just like an earthly geyser, when the pressure releases the gases fall back towards the Sun’s surface. But what causes the pressure? Unlike the volcanic activity that drives the terrestrial phenomena, solar fountains are caused by rearrangements of the Sun’s magnetic field, a continual process that results in looping cycles of increasing and decreasing pressure.

“EIS has observed the Sun’s fountains in unprecedented detail and it has enabled us to narrow down the fountains’ origins for the first time”, comments team member and MSSL postgraduate student Deb Baker. “We have also been able to find what drives the fountains by using computer experiments to replicate solar conditions.”

The sun-observing Hinode satellite is now in a sun-synchronous orbit, which allows it to observe the sun for uninterrupted periods lasting months at a time. Using a combination of optical, EUV and X-ray instrumentation Hinode will study the interaction between the Sun’s magnetic field and its corona to increase our understanding of the causes of solar variability.

“The computer experiments demonstrate that when a new section of magnetic field pushes through the solar surface it generates a continual cycle of fountains”, explains Dr. Murray, “but new magnetic fields are constantly emerging across the whole of the solar surface and so our results can explain a whole multitude of fountains that have been observed with Hinode.”

Tammy Plotner

Tammy was a professional astronomy author, President Emeritus of Warren Rupp Observatory and retired Astronomical League Executive Secretary. She’s received a vast number of astronomy achievement and observing awards, including the Great Lakes Astronomy Achievement Award, RG Wright Service Award and the first woman astronomer to achieve Comet Hunter's Gold Status. (Tammy passed away in early 2015... she will be missed)

Recent Posts

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

4 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

6 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

18 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

19 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

20 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

23 hours ago