Why Do Rockets Need Stages? The Quest to Build a Single Stage to Orbit (SSTO)


Now, don’t get me wrong, Science Fiction is awesome. Like almost everyone working in the field of space and astronomy, I was deeply influenced by science fiction. For me, it was Star Trek and Star Wars. I had a toy phaser that made this awesome really loud phaser sound, and I played with it non-stop until it disappeared one day. And I was sure I’d left it in the middle of my floor, like I did with all my toys, but I found it a few years later, hidden up in a closet that I couldn’t reach. And I always wondered how it got there.

Anyway, back to science fiction. For all of its inspiration, science fiction has put a few ideas into our brains which aren’t entirely helpful. You know, warp drives, artificial gravity, teleportation, and rockets that take off, fly to space, visit other planets orbiting stars, land again.

The Millennium Falcon, Firefly, and Enterprise Shuttles are all examples of single stage to orbit to orbit spacecraft, or SSTOs.

Consider the rockets that exist in reality, you know, the Atlases, Falcons and Deltas. They take off from a launch pad, fly for a bit until the fuel is used up in a stage of the rocket, then they jettison that stage and thrust with the next stage. The mighty Saturn V was so powerful that it had three stages, as it made it’s way to orbit.

Diagram of Saturn V Launch Vehicle. Credit: NASA/MSFC

As we discussed in a previous article, SpaceX is working to make the first stage, and maybe even the second stage reusable, which is a vast improvement over just letting everything burn up, but there are no rockets that actually fly to orbit and back in a single stage. In fact, using the technology we have today, it’s probably not a good idea.

Has anyone ever worked on a single stage to orbit? What technological advances will need to happen to make this work?

As I said earlier, a single stage to orbit rocket would be something like the Millennium Falcon. It carries fuel, and then uses that fuel to fly into orbit, and from world to world. Once it runs out of fuel, it gets filled up again, and then it’s off again, making the Kessel Run and avoiding Imperial Blockades.

This concept of a rocket matches our personal experience with every other vehicle we’ve ever been in. You drive your car around and refuel it, same with boats, airplanes and every other form of Earth-based transportation.

But flying into space requires the expenditure of energy that defies comprehension. Let me give you an example. A Falcon 9 rocket can lift about 22,800 kilograms into low-Earth orbit. That’s about the same as a fully loaded cement truck – which is a lot.

SpaceX Falcon 9 poised for Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying ten Iridium NEXT comsats to orbit. Credit: SpaceX

The entire fueled Falcon 9 weighs just over 540,000 kg, of which more than 510,000 kgs of it are fuel, with a little extra mass for the engines, fuel tanks, etc. Imagine if you drove a car that was essentially 95% fuel.

The problem is specific impulse; the maximum amount of thrust that a specific kind of engine and fuel type can achieve. I’m not going to go into all the details, but the most efficient chemical rockets we have, fueled by liquid hydrogen and oxygen, can just barely deliver enough thrust to get you to orbit. They have a maximum specific impulse of about 450 seconds.

Because the amount of fuel it takes to launch a rocket is so high, modern rockets use a staging system. Once a stage has emptied out all its fuel, it detaches and returns to Earth so that the second stage can keep going without having to drag along the extra weight of the empty fuel tanks.

After stage separation of the Falcon 9 rocket, flames are barely visible around nozzle as the second stage engine ignites and the first stage falls back to the Earth below. Credit: SpaceX

You might be surprised to know that many modern rockets are actually capable of reaching orbit with a single stage. The problem is that they wouldn’t be able to carry any significant payload.

At the end of the day, considering the chemical rockets we have today, the multi-staged profile is the most efficient and cost-effective strategy for carrying the most payload to space for the lowest cost possible.

Has anyone tried developing SSTOs in the past? Definitely. Probably the most widely publicized was NASA’s X-33/VentureStar program, developed by Lockheed Martin in the 1990s.

The proposed X-33 spacecraft. Credit: NASA

The purpose of the X-33 was to test out a range of new technologies for NASA, including composite fuel tanks, autonomous flight, and a new lifting body design.

In order to make this work, they developed a new kind of rocket engine called the “aerospike”. Unlike a regular rocket engine which provide a fixed amount of thrust, an aerospike could be throttled back like a jet engine, using less fuel at lower altitudes, where the atmosphere is thickest.

The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA’s Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. Credit: NASA’s Marshall Space Flight Center

Lockheed Martin was working on a 1/3rd scale prototype, but they struggled with many of the new technologies. In the end, their failure to be able to build a composite fuel tank that could contain the liquid oxygen and hydrogen forced them to abandon the project.

Even if they could get the technology working, so the X-33 was fully reusable, its ability to carry a payload would have been dramatically lower than a traditional multi-staged rocket.

In order to really achieve the dream of single stage to orbit, we need to step away from chemical rockets and move to a type of engine that can deliver thrust more efficiently.

We know that jets work more efficiently than rockets, because they only need to carry fuel. They pull oxygen in from the atmosphere, to burn the fuel. So one intriguing idea is to make a rocket that acts like a jet engine while in the atmosphere, and then acts like a rocket once it’s out in space.

And that’s the plan with the British Skylon rocket. It would take off from a regular runway, accelerate to about 6,600 km/h reaching an altitude of 26 kilometers. All this time, its SABRE engine would be pulling in oxygen from the atmosphere, combining it with hydrogen fuel.

An artist’s conception of Reaction Engines’ Skylon spacecraft. Credit: Reaction Engines

From this point, it would switch over to an internal liquid oxygen tank to provide oxidizer, and complete the flight to orbit. All the while using the same flexible SABRE engine. Once in orbit, it would release its 15-tonne payload and then return to Earth, landing on a runway like the space shuttle orbiter did. It’s a really creative idea.

Unfortunately, the development of the Skylon has taken a long time, with shrinking budgets limiting the amount of tests they’ve been able to do. If everything goes well, the first prototype might fly within a few years, so stay tuned to this story.

Another idea which has had some testing is the idea of a nuclear rocket. Unlike a chemical rocket, which burns fuel, and blasts it out the back for thrust, a nuclear rocket would carry a reactor on board. It would heat up some kind of working fuel, like liquid hydrogen, and then blast it out the back for propulsion.

The key elements of a NERVA solid-core nuclear-thermal engine. Credit: NASA

NASA did some tests a few decades ago with a nuclear thermal rocket called NERVA, and found that they could sustain high levels of thrust for very long periods of time. Their final prototype, provided continuous thrust for over 2 hours, including 28 minutes at full power.

NASA calculated that a nuclear-powered rocket would be roughly twice as efficient as a traditional chemical rocket. It would have a specific impulse of more than 950 seconds. But flying a nuclear rocket into space comes with a significant downside. Rockets explode. It’s bad when a chemical rocket explodes, but if a nuclear reactor detonated while making its way up through the atmosphere, it would rain down radioactive debris. For now, that’s considered too much of a risk; however, future interplanetary missions may very well use nuclear rockets.

There’s one more exotic fuel system that’s really exciting – metallic hydrogen. This solid form appears naturally at the heart of Jupiter, under the incredible pressure of the planet’s gravity. But earlier this year, researchers at Harvard finally created some in the lab. They used a tiny vice to squeeze hydrogen atoms with more force than the pressures at the center of the Earth.

Microscopic images of the stages in the creation of atomic molecular hydrogen: Transparent molecular hydrogen (left) at about 200 GPa, which is converted into black molecular hydrogen, and finally reflective atomic metallic hydrogen at 495 GPa. Credit: Isaac Silvera

It took an enormous amount of energy to squeeze hydrogen together that tightly, but in theory, once crafted, it should be relatively stable. And here’s the best part. When you ignite it, you get that energy back.

If used as a rocket fuel, it would provide a specific impulse of 1700 seconds. Compare that to the mere 450 from chemical rockets. A rocket powered by metallic hydrogen would easily get to orbit with a single stage, and travel efficiently to other planets.

Single Stage to Orbit rockets would be awesome. Science fiction has foretold it. That said, at the end of the day, whatever gets the most amount of payload into orbit for the lowest price is the most interesting rocket system. And right now, that’s staged rockets.

However, a bigger issue might be reliability and reusability. If you can get a single vehicle that takes off, travels to orbit and then returns to its launch pad, you can’t get anything simpler than that. No rockets to restack, no barges to navigate. You just use and reuse the same system again and again, and that’s a really exciting idea.

Right this moment, reusable staged rockets like SpaceX has the edge, but if and when the Skylon gets flying, I think we’ll have some serious competition.

Once we master metallic hydrogen, spaceflight will look very very different. Science reality will nearly match science fiction, and I’ll finally be able to fly my own personal Millennium Falcon.

4 Replies to “Why Do Rockets Need Stages? The Quest to Build a Single Stage to Orbit (SSTO)”

  1. Fraser, a few points:

    1) If you look at Skylon’s projected minimum cost to orbit – a cost that wouldn’t be achieved until after they’d been in operation for many years – it’s more expensive than an expendable Falcon Heavy, on a per kilogram basis. Skylon would be *very* expensive to operate. It can’t even compete with modern expendable rockets, never mind the prices we’ll likely be seeing in a few years from partially reusable rockets like the Falcon 9 or New Glenn.

    2) Something like VentureStar (or Skylon) is certainly possible, but it would be expensive for the amount of payload to orbit you can provide. Physics demands it.

    3) Fission is not an option and never will be for political reasons. There is no reason to even discuss it. I’m kinda sad about that, but that’s the reality.

    4) Metalic Hydrogen is cool, as are other exotic chemical fuels. We’re also hundreds if not thousands of years away from being able to use them. Not worth discussing in the near term (next hundred years).

    That only leaves the one thing you didn’t discuss, which is the possibility that small (less than 100 tonne) fusion reactors will eventually be energy dense enough to be the power source for rockets (in the next few decades or the next century). If they explode, who cares? The only thing that gets spread around is a few grams of boron-11 or tritium or whatever. That much is irrelevant, even in a populated area. Fusion is the *only* power source that can give us realistic single stage to orbit capabilities. Until then, economics will dictate that we use staged rockets (eventually fully reusable) to deliver payload to orbit.

    1. (1) and (2). Aerospike is a genuine and transparently physics-based concept, whatever its long-term outcome. Let’s not lump it together with Skylon/Sabre fools-gold. The latter belongs with cold-fusion and ZPE power extraction.
      (3) Probably correct.
      (4) Not even worth mentioning. Same class as monatomic hydrogen propulsion.

      Fusion. Static fusion has always been right around the corner. For the past 50 years. Asking for fusion propulsion systems light enough for single-stage (or any stage) boost to orbit is asking for another 50 years. We may as well re-enter the ionosphere free-radical-recombination 2nd stage ramjet concept (Baldwin & Blackshear, 1958)
      https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930085302.pdf

      This leaves on-going development of air-breathing boosters in the scramjet/ram-rocket broad category. If not direct-to-orbit, then almost certainly one-booster, fly-back-to-airport. This presents the best division of SI between first and second stages, the latter involving standard rockets.

  2. Fraser,
    Phasers and other noisy toys get stuck in out of reach cupboards due to transporter malfunctions, you should have worked that one out.
    Mike

  3. While the future of the boost-phase is in airbreathers, please: Sabre lies somewhere along the continuum between hoax and scam. Its engineering is more in the social domain, and has taken in too many European agencies already. Let’s not add successes to its propaganda conquests to this side of the Atlantic.

Comments are closed.