Our Milky Way’s black hole is quiet – too quiet – some astronomers might say. But according to a team of Japanese astronomers, the supermassive black hole at the heart of our galaxy might be just as active as those in other galaxies, it’s just taking a little break. Their evidence? The echoes from a massive outburst that occurred 300 years ago.
The astronomers found evidence of the outburst using ESA’s XMM-Newton space telescope, as well as NASA and Japanese X-ray satellites. And it helps solve the mystery about why the Milky Way’s black hole is so quiet. Even though it contains 4 million times the mass of our Sun, it emits a fraction of the radiation coming from other galactic black holes.
“We have wondered why the Milky Way’s black hole appears to be a slumbering giant,” says team leader Tatsuya Inui of Kyoto University in Japan. “But now we realize that the black hole was far more active in the past. Perhaps it’s just resting after a major outburst.”
The team gathered their observations from 1994 to 2005. They watched how clouds of gas near the central black hole brightened and dimmed in X-ray light as pulses of radiation swept past. These are echoes, visible long after the black hole has gone quiet again.
One large gas cloud is known as Sagittarius B2, and it’s located 300 light-years away from the central black hole. In other words, radiation reflecting off of Sagittarius B2 must have come from the black hole 300 years previously.
By watching the region for more than 10 years, the astronomers were able to watch an event wash across the cloud. Approximately 300 years ago, the black hole unleashed a flare that made it a million times brighter than it is today.
It’s hard to explain how the black hole could vary in its radiation output so greatly. It’s possible that a supernova in the region plowed gas and dust into the vicinity of the black hole. This led to a temporary feeding frenzy that awoke the black hole and produced the great flare.
Original Source: ESA News Release
Theoretically a neutron star could have less mass than a white dwarf. If these light…
The James Webb Space Telescope (JWST) was specifically intended to address some of the greatest…
The James Webb Space Telescope was designed and built to study the early universe, and…
Titan is one of the solar system's most fascinating worlds for several reasons. It has…
Catching the best sky watching events for the coming year 2025. Comet C/2023 A3 Tsuchinshan-ATLAS…
For decades cosmologists have wondered if the large-scale structure of the universe is a fractal:…