In the coming decades, NASA has some rather bold plans for space exploration. By the 2030s, they hope to mount their “Journey to Mars“. a crewed mission that will see astronauts traveling beyond Earth for the first time since the Apollo era. At the same time, private companies and organizations like SpaceX and MarsOne are hoping to start colonizing Mars within a decade or so.
According to Chris Hadfield, these mission concepts are all fine and good. But as he explained in a recent interview, our efforts should be focused on renewed exploration of the Moon and the creation of a lunar settlement before we do the same for Mars. In this respect, he is joined by organizations like the European Space Agency (ESA), Roscosmos, the Chinese National Space Agency (CNSA), and others.
When it comes to establishing a base on the Moon, the benefits are rather significant. For starters, a lunar outpost could serve as a permanent research base for teams of astronauts. In the same respect, it would present opportunities for scientific collaboration between space agencies and private companies – much in the same way the International Space Station does today.
On top of that, a lunar outpost could serve as a refueling station, facilitating missions deeper into the Solar System. According to estimates prepared by NexGen Space LLC (a consultant company for NASA), such a base could cut the cost of any future Mars missions by about $10 billion a year. Last, but not least, it would leverage key technologies that have been developed in recent years, from reusable rockets to additive manufacturing (aka. 3D printing).
And as Chris Hadfield stated in an interview with New Scientist, there are also a number of practical reasons for back to the Moon before going to Mars – ranging from distance to the development of “space expertise”. For those interested in science and space exploration, Chris Hadfield has become a household name in recent years. Before becoming an astronaut, he was a pilot with the Royal Canadian Air Force (RCAF) and flew missions for NORAD.
After joining the Canadian Space Agency (CSA) in 1992, he participated in two space missions – STS-74 and STS-100 in 1995 and 2001, respectively – as a Mission Specialist. These missions involved rendezvousing with the Russian space station Mir and the ISS. However, his greatest accomplishment occurred in 2012, when he became the first Canadian astronaut to command an ISS mission – Expedition 35.
During the course of this 148-day mission, Hadfield attracted significant media exposure due to his extensive use of social media to promote space exploration. In fact, Forbes described Hadfield as “perhaps the most social media savvy astronaut ever to leave Earth”. His promotional activities included a collaboration with Ed Robertson of The Barenaked Ladies and the Wexford Gleeks, singing “Is Somebody Singing?“ (I.S.S.) via Skype.
The broadcast of this event was a major media sensation, as was his rendition of David Bowie’s “Space Oddity“, which he sung shortly before departing the station in May 2013. Since retiring from the Canadian Space Agency, Hadfield has become a science communicator and advocate for space exploration. And when it comes to the future, he was quite direct in his appraisal that the we need to look to the Moon first.
According to Hadfield, one of the greatest reasons for establishing a base on the Moon has to do with its proximity and the fact that humans have made this trip before. As he stated:
“With long-haul space exploration there is a whole smorgasbord of unknowns. We know some of the threats: the unreliability of the equipment, how to provide enough food for that length of time. But there are countless others: What are the impacts of cosmic rays on the human body? What sort of spacecraft do you need to build? What are the psychological effects of having nothing in the window for months and months? And going to a place that no one has ever been before, that can’t be discounted.”
In that, he certainly has a point. At their closest – i.e. when it is at “opposition with the Sun”, which occurs approximately every two years – Mars and Earth are still very far from each othre. In fact, the latest closest-approach occurred in 2003, when the two planets were roughly 56 million km (33.9 million miles) apart. This past July, the planets were again at opposition, where they were about 57.6 million km (35.8 million miles) apart.
Using conventional methods, it would take a mission between 150 and 300 days to get from the Earth to Mars. Whereas a more fuel-efficient approach (like ion engines) would cost less but take much longer, a more rapid method like chemical rockets would could cost far more. Even with Nuclear Thermal Propulsion (NTP) or the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept, the journey could still take 5 to 7 months.
During this time, astronauts would not only be subjected to a great deal of cosmic radiation, they would have to contend with the affects of microgravity. As studies that have been conducted aboard the ISS that have shown, long-term exposure to a microgravity environment can lead to losses in bone density, muscular atrophy, diminished eyesight, and organ damage.
Recent studies have also shown that exposure to radiation while on the surface of Mars would be quite significant. During its journey to Mars, the Curiosity rover recorded that it was subjected to average dose of 1.8 millisieverts (mSv) per day from inside its spaceship – the Mars Science Laboratory. During its first three hundred days on the surface, it was exposed to about 0.67 millisieverts (mSv) per day.
This is about half and one-fifth (respectively) of what people are exposed to during an average here on Earth. While this falls outside of NASA’s official guidelines, it is still within the guidelines of other space agencies. But to make matter worse, a new study from the University of Nevada, Las Vegas, concluded that exposure to cosmic rays could cause cell damage that would spread to other cells in the body, effectively doubling the risk of cancer.
The risks of going to the Moon, in contrast, are easy to predict. Thanks to the Apollo missions, we know that it takes between two and three days to travel from the Earth to the Moon. The Apollo 11 mission, for example, launched from the Cape Kennedy on July 16th, 1969, and arrived in lunar orbit by July 19th, 1969 – spending a total of 51 hours and 49 minutes in space. Astronauts conducting this type of mission would therefore be subject to far less radiation.
Granted, the surface of the Moon is still exposed to significant amounts of radiation since the Moon has no atmosphere to speak of. But NASA estimates that walls which are 2.5 meters in thickness (and made from lunar regolith) will provide all the necessary shielding to keep astronauts or colonists safe. Another good reason to go to the Moon first, according to Hadfield, is because expertise in off-world living is lacking.
“There are six people living on the International Space Station, and we have had people there continuously for nearly 17 years,” he said. “But the reality is we have not yet figured out how to live permanently off-planet. So I think if we follow the historically driven pattern then the moon would be first. Not just to reaffirm that we can get there, but to show that we can also live there.”
But perhaps the best reason to settle the Moon before moving onto Mars has to do with the fact that exploration has always been about taking the next step, and then the next. One cannot simply leap from one location to the next, and expect successful results. What are required is baby-steps. And in time, sufficient traction can be obtained and the process will build up speed, enabling steps that are greater and more far-reaching. Or as Hadfield put it:
“For tens of thousands of years humans have followed a pattern on Earth: imagination, to technology-enabled exploration, to settlement. It’s how the first humans got to Australia 50,000 or 60,000 years ago, and how we went from Yuri Gagarin and Alan Shepherd orbiting Earth to the first people putting footprints on the moon, to people living in orbit.
Based on this progression, one can therefore see why Hadfield and others beleive that the next logical step is to return to the Moon. And once we establish a foothold there, we can then use it to launch long-range missions to Mars, Venus, and beyond. Incremental steps that eventually add up to human beings setting foot on every planet, moon, and larger body in the Solar System.
On the subject of lunar colonization, be sure to check out our series on Building a Moon Base, by Universe Today’s own Ian O’Neill.
Further Reading: New Scientist
Chris Hadfield is half right—we should be going to the moon right now—today, and for a zillion reasons. We have the capability to do so, and we have several private companies that given the financial inducement, would be there already. The trip to the moon is not an issue, but what we do with the moon once we get there has been left out of the equation.
But there should also be a push to go beyond the moon because that ability and technology is not laying on a shelf somewhere, waiting to be dusted off. This frontier begs to be opened by those whose idea of a vision is larger than what the moon represents.
To slow down this effort in favor of aiming harder at the moon is bad rocket science, borrowing a pun. We can, and should, do both with the understanding that getting to the moon can happen tomorrow if we want to go. Mars and beyond? Just a little longer, but it will be done.
The conditions of living on the Moon would be very similar to that of living on Mars, why not perfect the science there where help is closer first?
Hadfield is completely correct. All this media hubbub about settling on Mars with out even figuring out how man can even get there, how we would even live there, could we even survive the flight there, is silly. All the time, money, and effort and undoubted failure but no one cares as long as it makes headlines and sells the next Tesla. All those dreamers who would go there never to breathe fresh air, never to hear a bird sing outside, never to watch the sun set over the ocean, should we not get it right on this planet before polluting another because make no mistake that is what we’d do. And bring our Earthmen germs with it. Sorry, don’t buy the hype at all.
I think we should just make up our minds and just do it.
Yes self-sustaining colony is more likely on Mars than earth. Known water supply, 24 hour day, stronger gravity etc.
But there are lots of technologies and discoveries that can be made by a colony on the moon and it’s far easier to get too. And don’t forget the near real time communication, the internet ( Netflix and so on) available on the moon.
Personally… I think we won’t go anywhere until we have advanced AI controlled robots to base build before we go.
Chris Hadfield is right. I worry that NASA is caught up in the drive to go to Mars for all the wrong reasons. Mars is “sexy”, the Moon…pfff…been there, done that. One of Hadfield’s arguments particularly resonates with me. For both the Moon and Mars, a habitat for humans on the surface must have adequate shielding from dangerous radiation, both cosmic radiation as well as energetic particles from the Sun. To build those habitats, we will require specifically designed robots and the Moon offers a place where we can design and test such robots. Once that process is complete, then we can send them to Mars to build habitats ready for use once our astronauts reach the red planet.
The Moon’s far side also offers a perfect place to build huge radio telescopes, far from the polluted skies here on Earth, but that is another story.
Enabling people to live on the Moon has been a practical idea for many decades. The challenge seems to be finding the funding. Will philanthropists fund it or will taxpayers all contribute? Or will funds need to come from all directions? And is this an accounting question or a social question? Let’s not wait for more decades to decide.