SpaceX

Here’s How SpaceX is Planning to Recover Rocket Fairings: a Boat With a Net Called Mr. Steven

When visionary entrepreneur Elon Musk founded SpaceX in 2002, he did so with the intention of rekindling human space exploration and sending humans to Mars. Intrinsic to this vision was the reduction of costs associated with individual launches, which has so far been focused on the development of reusable first-stage rockets. However, the company recently announced that they are looking to make their rocket’s payload fairings reusable as well.

The payload fairing is basically the disposable shell at the top of the rocket that protects the cargo during launch. Once the rocket reaches orbit, the fairings falls away to release the payload to space and are lost. But if they could be retrieved, it would reduce launch cost by additional millions. Known as “Mr. Steven”, this new retrieval system consists of a platform ship, extended arms, and a net strung between them.

Mr. Steven is not unlike SpaceX’s Autonomous Spaceport Drone Ships (ASDS), which are used to retrieve first stage rocket boosters at sea. SpaceX has two operational drone ships, including Just Read the Instructions – which is stationed in the Pacific to retrieve launches from Vandenberg – and Of Course I Still Love You, which is stationed in the Atlantic to retrieve launches from Canaveral.

The first ten IridiumNEXT satellites are stacked and encapsulated in the Falcon 9 fairing for launch from Vandenberg Air Force Base, Ca., in early 2017. Credit: Iridium

Recently, Teslarati’s Pauline Acalin captured some photographs of Mr. Steven while it was docked on the California coast near Vandenberg Air Force Base, where it preparing to head out to sea in support of the latest Falcon 9 launch. Known as the PAZ Mission, this launch will place a series of Spanish imaging satellites in orbit, as well as test satellites that will be part of SpaceX’s plan to provide broadband internet service.

Originally scheduled for Wednesday, February 21st, the launch was scrubbed due to strong upper level winds. It is currently scheduled to take place at 6:17 a.m. PST (14:17 UTC) on Thursday, February 22nd, from Space Launch Complex 4 East (SLC-4E) at the Vandenburg Air Force Base. After the cargo is deployed to orbit, the fairings will fall back slowly to Earth thanks to a set of geotagged parachutes.

These chutes will guide the fairings down to the Pacific Ocean, where Mr. Steven will sail to meet them. The fairings, if all goes as planned, will touch down gently into the net and be recovered for later use. In March of 2017, SpaceX successfully recovered a fairing for the first time, which allowed them to recoup an estimated $6 million dollars from that launch.

At present, SpaceX indicates that the cost of an individual Falcon 9 launch is an estimated $62 million. If the payload fairings can be recovered regularly, that means that the company stands to recoup an additional 10% of every individual Falcon 9 launch.

This news comes on the heels of SpaceX having successfully launched their Falcon Heavy rocket, which carried a Tesla Roadster with “Spaceman” into orbit. The launch was made all the more impressive due to the fact that two of the three rocket boosters used were successfully recovered. The core booster unfortunately crashed while attempted to land on one of the ASDS at sea.

At this rate, SpaceX may even start trying to recover their rocket’s second stages in the not-too-distant future. If indeed all components of a rocket are reusable, the only costs associated with individual launches will be the one-time manufacturing cost of the rocket, the cost of fuel, plus any additional maintenance post-launch.

For fans of space exploration and commercial aerospace, this is certainly exciting news! With every cost-cutting measure, the possibilities for scientific research and crewed missions increase exponentially. Imagine a future where it costs roughly the same to deploy space habitats to orbit as it does to deploy commercial satellites, and sending space-based solar arrays to orbit (and maybe even building a space elevator) is financially feasible!

It might sound a bit fantastic, but when the costs are no longer prohibitive, a lot of things become possible.

Further Reading: Teslatari, TechCrunch

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

Astronomers Find a 3 Million Year Old Planet

Astronomers have just found one of the youngest planets ever. At only 3 million years…

18 hours ago

There was Hot Water on Mars 4.45 Billion Years Ago

Mars formed 4.5 billion years ago, roughly the same time as the Earth. We know…

22 hours ago

Axion Dark Matter May Make Spacetime Ring

Dark matter made out of axions may have the power to make space-time ring like…

1 day ago

Earth’s Old Trees Keep A Record of Powerful Solar Storms

Most of the time the Sun is pretty well-mannered, but occasionally it's downright unruly. It…

2 days ago

New Supercomputer Simulation Explains How Mars Got Its Moons

One mystery in planetary science is a satisfying origin story for Mars's moons, Phobos and…

2 days ago

The Early Universe May Have Had Giant Batteries of Dust

The largest magnetic fields in the universe may have found themselves charged up when the…

2 days ago