How would you like to take an all-expenses-paid trip to the Sun? NASA is inviting people around the world to submit their names to be placed on a microchip aboard the Parker Solar Probe mission that will launch this summer. As the spacecraft dips into the blazing hot solar corona your name will go along for the ride. To sign up, submit your name and e-mail. After a confirming e-mail, your digital “seat” will be booked. You can even print off a spiffy ticket. Submissions will be accepted until April 27, so come on down!
The Parker Solar Probe is the size of a small car and named for Prof. Eugene Parker, a 90-year-old American astrophysicist who in 1958 discovered the solar wind. It’s the first time that NASA has named a spacecraft after a living person. The Parker probe will launch between July 31 and August 19 but not immediately head for the Sun. Instead it will make a beeline for Venus for the first of seven flybys. Each gravity assist will slow the craft down and reshape its orbit (see below), so it later can pass extremely close to the Sun. The first flyby is slated for late September.
When heading to faraway places, NASA typically will fly by a planet to increase the spacecraft’s speed by robbing energy from its orbital motion. But a probe can also approach a planet on a different trajectory to slow itself down or reconfigure its orbit.
The spacecraft will swing well within the orbit of Mercury and more than seven times closer than any spacecraft has come to the Sun before. When closest at just 3.9 million miles (6.3 million km), it will pass through the Sun’s outer atmosphere called the corona and be subjected to temperatures around 2,500°F (1,377°C). The primary science goals for the mission are to trace how energy and heat move through the solar corona and to explore what accelerates the solar wind as well as solar energetic particles.
The vagaries of the solar wind, a steady flow of particles that “blows” from the Sun’s corona at more than million miles an hour, can touch Earth in beautiful ways as when it energizes the aurora borealis. But it can also damage spacecraft electronics and poorly protected power grids on the ground. That’s why scientists want to know more about how the corona works, in particular why it’s so much hotter than the surface of the Sun — temperatures there are several million degrees.
As you can imagine, it gets really, really hot near the Sun, so you’ve got to take special precautions. To perform its mission, the spacecraft and instruments will be protected from the Sun’s heat by a 4.5-inch-thick carbon-composite shield, which will keep the four instrument suites designed to study magnetic fields, plasma and energetic particles, and take pictures of the solar wind, all at room temperature.
Similar to how the Juno probe makes close passes over Jupiter’s radiation-fraught polar regions and then loops back out to safer ground, the Parker probe will make 24 orbits around the Sun, spending a relatively short amount of face to face time with our star. At closest approach, the spacecraft will be tearing along at about 430,000 mph, fast enough to get from Washington, D.C., to Tokyo in under a minute, and will temporarily become the fastest manmade object. The current speed record is held by Helios-B when it swung around the Sun at 156,600 mph (70 km/sec) on April 17, 1976.
Many of you saw last August’s total solar eclipse and marveled at the beauty of the corona, that luminous spider web of light around Moon’s blackened disk. When closest to the Sun at perihelion the Parker probe will fly to within 9 solar radii (4.5 solar diameters) of its surface. That’s just about where the edge of the furthest visual extent of the corona merged with the blue sky that fine day, and that’s where Parker will be!
One explanation for dark matter is that it's made out of primordial black holes, formed…
The seasonal variations of methane in the Martian atmosphere is an intriguing clue that there…
For decades, astronomers have used powerful instruments to capture images of the cosmos in various…
Although the outer Solar System is mostly empty, there are icy objects drifting within the…
A stellar odd couple 700 light-years away is creating a chaotically beautiful display of colourful,…
About 370,000 years after the Big Bang, the Universe had cooled down so light could…