For almost a century now, the concept of terraforming has been explored at length by both science fiction writers and scientists alike. Much like setting foot on another planet or traveling to the nearest star, the idea of altering an uninhabitable planet to make it suitable for humans is a dream many hope to see accomplished someday. At present, much of that hope and speculation is aimed at our neighboring planet, Mars.
But is it actually possible to terraform Mars using our current technology? According to a new NASA-sponsored study by a pair of scientists who have worked on many NASA missions, the answer is no. Put simply, they argue that there is not enough carbon dioxide gas (CO2) that could practically be put back into Mars’ atmosphere in order to warm Mars, a crucial step in any proposed terraforming process.
The study, titled “Inventory of CO2 available for terraforming Mars“, recently appeared in the journal Nature Astronomy. The study was conducted by Bruce Jakosky – a professor of geological sciences and the associate director of the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado, Boulder – and Christopher S. Edwards, an assistant professor of planetary science at Northern Arizona University and the leader of the Edwards Research Group.
The study was supported in part by NASA through the Mars Atmospheric and Volatile EvolutioN (MAVEN) and Mars Odyssey THEMIS (Thermal Emission Imaging System) projects. Whereas Professor Jakosky was the Principal Investigator on the MAVEN mission, Professor Edwards is a participating scientist on the Mars Science Laboratory Curiosity Rover (MSL), and worked on the Mars Odyssey THEMIS mission (among other Mars missions).
As we explored in a previous article, “How Do We Terraform Mars?“, many methods have been suggested for turning the Red Planet green. Many of these methods call for warming the surface in order to melt the polar ice caps, which would release an abundant amount of CO2 to thicken the atmosphere and trigger a greenhouse effect. This would in turn cause additional CO2 to be released from the soil and minerals, reinforcing the cycle further.
According to many proposals, this would be followed by the introduction of photosynthetic organisms such as cyanobacteria, which would slowly convert the atmospheric CO2 into oxygen gas and elemental carbon. This very method was suggested in a 1976 NASA study, titled “On the Habitability of Mars: An Approach to Planetary Ecosynthesis“. Since that time, multiple studies and even student teams have proposed using cyanobacteria to terraform Mars.
However, after conducting their analysis, Professors Jakosky and Edwards concluded that triggering a greenhouse effect on Mars would not be as simple as all that. For the sake of their study, Jakosky and Edwards relied on about 20 years of data accumulated by multiple spacecraft observations of Mars. As Edwards indicated in a recent NASA press release:
“These data have provided substantial new information on the history of easily vaporized (volatile) materials like CO2 and H2O on the planet, the abundance of volatiles locked up on and below the surface, and the loss of gas from the atmosphere to space.”
To determine if Mars had enough gases for a greenhouse effect, Jakosky and Edwards analyzed data from NASA’s Mars Reconnaissance Orbiter (MRO) and Mars Odyssey spacecraft to determine the abundance of carbon-bearing minerals in Martian soil and CO2 in polar ice caps. They they used data from NASA’s MAVEN mission to determine the loss of the Martian atmosphere to space. As Prof. Jakosky explained:
“Carbon dioxide (CO2) and water vapor (H2O) are the only greenhouse gases that are likely to be present on Mars in sufficient abundance to provide any significant greenhouse warming… Our results suggest that there is not enough CO2 remaining on Mars to provide significant greenhouse warming were the gas to be put into the atmosphere; in addition, most of the CO2 gas is not accessible and could not be readily mobilized. As a result, terraforming Mars is not possible using present-day technology.”
Although Mars has significant quantities of water ice, previous analyses have shown that water vapor would not be able to sustain a greenhouse effect by itself. In essence, the planet is too cold and the atmosphere too thin for the water to remain in a vaporous or liquid state for very long. According to the team, this means that significant warming would need to take place involving CO2 first.
However, Mars atmospheric pressure averages at about 0.636 kPA, which is the equivalent of about 0.6% of Earth’s air pressure at sea level. Since Mars is also roughly 52% further away from the Sun than Earth (1.523 AUs compared to 1 AU), researchers estimate that a CO2 pressure similar to Earth’s total atmospheric pressure would be needed to raise temperatures enough to allow for water to exist in a liquid state.
According to the team’s analysis, melting the polar ice caps (which is the most accessible source of carbon dioxide) would only contribute enough CO2 to double the Martian atmospheric pressure to 1.2% that of Earth’s. Another source is the dust particles in Martian soil, which the researchers estimate would provide up to 4% of the needed pressure. Other possible sources of carbon dioxide are those that are locked in mineral deposits and water-ice molecule structures known as “clathrates”.
However, using the recent NASA spacecraft observations of mineral deposits, Jakosky and Edwards estimate that these would likely yield less than 5% of the require pressure each. What’s more, accessing even the closest minerals to the surface would require significant strip mining, and accessing all the CO2 attached to dust particles would require strip mining the entire planet to a depth of around 90 meters (100 yards).
Accessing carbon-bearing minerals deep in the Martian crust could be a possible solution, but the depth of these deposits is currently unknown. In addition, recovering them with current technology would be incredibly expensive and energy-intensive, making extraction highly impractical. Other methods have been suggested, however, which include importing flourine-based compounds and volatiles like ammonia.
The former was proposed in 1984 by James Lovelock and Michael Allaby in their book, The Greening of Mars. In it, Lovelock and Allaby described how Mars could be warmed by importing chlorofluorocarbons (CFCs) to trigger global warming. While very effective at triggering a greenhouse effect, these compounds are short-lived and would need to be introduced in significant amounts (hence why the team did not consider them).
The idea of importing volatiles like ammonia is an even more time-honored concept, and was proposed by Dandridge M. Cole and Donald Cox in their 1964 book, “Islands in Space: The Challenge of the Planetoids, the Pioneering Work“. Here, Cole and Cox indicated how ammonia ices could be transported from the outer Solar System (in the form of iceteroids and comets) and then impacted on the surface.
However, Jakosky and Edwards’ calculations reveal that many thousands of these icy objects would be required, and the sheer distance involved in transporting them make this an impractical solution using today’s technology. Last, but not least, the team considered how atmospheric loss could be prevented (which could be done using a magnetic shield). This would allow for the atmosphere to build up naturally due to outgassing and geologic activity.
Unfortunately, the team estimates that at the current rate at which outgassing occurs, it would take about 10 million years just to double Mars’ current atmosphere. In the end, it appears that any effort to terraform Mars will have to wait for the development of future technologies and more practical methods.
These technologies would most likely involve more cost-effective means for conducting deep-space missions, like nuclear-thermal or nuclear-electric propulsion. The establishment of permanent outposts on Mars would also be an important first step, which could be dedicated to thickening the atmosphere by producing greenhouse gases – something humans have already proven to be very good at here on Earth!
There’s also the possibility of importing methane gas from the outer Solar System, another super-greenhouse gas, which is also indigenous to Mars. While it constitutes only a tiny percentage of the atmosphere, significant plumes have been detected in the past during the summer months. This includes the “tenfold spike” detected by the Curiosity rover in 2014, which pointed to a subterranean source. If these sources could be mined, methane gas might not even need to be imported.
For some time, scientists have known that Mars was not always the cold, dry, and inhospitable place that it is today. As evidenced by the presence of dry riverbeds and mineral deposits that only form in the presence of liquid water, scientists have concluded that billions of years ago, Mars was a warmer, wetter place. However, between 4.2 and 3.7 billion years ago, Mars’ atmosphere was slowly stripped away by solar wind.
This discovery has led to renewed interest in the colonizing and terraforming of Mars. And while transforming the Red Planet to make it suitable for human needs may not be doable in the near-future, it may be possible to get the process started in just a few decades’ time. It may not happen in our lifetime, but that does not mean that the dream of one-day making “Earth’s Twin” truly live up to its name won’t come true.
Further Reading: NASA
How do you weigh one of the largest objects in the entire universe? Very carefully,…
Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…
Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…
Some binary stars are unusual. They contain a main sequence star like our Sun, while…
11 million years ago, Mars was a frigid, dry, dead world, just like it is…
Uranus is an oddball among the Solar System's planets. While most planets' axis of rotation…