Most of the stars in the universe will end their lives as white dwarfs, the class of star that’s just a remnant of the star’s former self when all the nuclear fuel in the star’s core has burned. Studying these white dwarfs gives astronomers an important view of the endpoint of most stars. Recently, researchers from the University of Texas have confirmed the existence of a new type of dwarf star, a “pulsating carbon white dwarf.†Since pulsating stars can reveal the inner workings of these stars, astronomers are hoping now to be able to learn more about what goes on inside white dwarf stars.
Until recently, astronomers knew of only two types of white dwarf stars: those that have an outer layer of hydrogen (about 80 percent), and about those with an outer layer of helium (about 20 percent), whose hydrogen shells have somehow been stripped away. Then in 2007, a third type was discovered, a very rare “hot carbon white dwarf.†These stars have had both their hydrogen and helium shells stripped off, leaving their carbon layer exposed.
After these new carbon white dwarfs were announced, Michael H. Montgomery from the University of Texas calculated that pulsations in these stars were possible. Similar to how geologists study seismic waves from earthquakes to understand what goes on in Earth’s interior astronomers can study the changes in light from a pulsating star to “look†into the star’s interior. In fact, this type of star-study is called “asteroseismology.â€
Montgomery and his team began a systematic study of carbon white dwarfs with the Struve Telescope at McDonald Observatory, looking for pulsators. They discovered a pulsating star about 800 light-years away in the constellation Ursa Major, (called SDSS J142625.71+575218.3) fits the into this category. Its light intensity varies regularly by nearly two percent about every eight minutes.
“The discovery that one of these stars is pulsating is remarkably important,” said National Science Foundation astronomer Michael Briley. “This will allow us to probe the white dwarf’s interior, which in turn should help us solve the riddle of where the carbon white dwarfs come from and what happens to their hydrogen and helium.”
The star lies about ten degrees east northeast of Mizar, the middle star in the handle of the Big Dipper. This white dwarf has about the same mass as our Sun, but its diameter is smaller than Earth’s. The star has a temperature of 35,000 degrees Fahrenheit (19,500 C), and is only 1/600th as bright as the Sun.
Original News Source: McDonald Observatory Press Release
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…
A team of astronomers have detected a surprisingly fast and bright burst of energy from…
Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…
In 1971, the Soviet Mars 3 lander became the first spacecraft to land on Mars,…
Many of the black holes astronomers observe are the result of mergers from less massive…