Categories: AstronomyCosmology

XMM-Newton Discovers Part of Missing Matter in the Universe

We’re getting the numbers down pretty well now about how much we don’t know about the universe: Only about 5% of our universe consists of normal matter, made of atoms. The rest of our universe is composed of elusive matter that we don’t understand: dark matter (23%) and dark energy (72%). And of that 5% of normal matter, well, we don’t know what half of that is, either. All the stars, galaxies and gas observable in the universe account for less than a half of all the matter that should be around.

About 10 years ago, scientists predicted that the missing half of ‘ordinary’ or normal matter exists in the form of low-density gas, filling vast spaces between galaxies. The European Space Agency announced today that the orbiting X-ray observatory XMM-Newton has uncovered this low density, but high temperature gas.

The universe has been described as a cosmic web. The dense part of the web is made of clusters of galaxies, which are the largest objects in the universe. Astronomers suspected that low-density gas filled in the filaments of the web. But the low density of the gas has made it difficult to detect. With the XMM-Newton’s high sensitivity, astronomers have discovered the hottest parts of this gas.

Astronomers using XMM-Newton were observing a pair of galaxy clusters, Abell 222 and Abell 223, located 230 million light-years from Earth, when the images and spectra of the system revealed a bridge of hot gas connecting the clusters.

“The hot gas that we see in this bridge or filament is probably the hottest and densest part of the diffuse gas in the cosmic web, believed to constitute about half the baryonic matter in the universe,” says Norbert Werner from SRON Netherlands Institute for Space Research, leader of the team reporting the discovery.

The discovery of this hot gas will help better understand the evolution of the cosmic web.

“This is only the beginning,” said Werner. “To understand the distribution of the matter within the cosmic web, we have to see more systems like this one. And ultimately launch a dedicated space observatory to observe the cosmic web with a much higher sensitivity than possible with current missions. Our result allows to set up reliable requirements for those new missions.”

Original News Source: ESA Press Release

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

The First Close-Up Picture of Star Outside the Milky Way

Like a performer preparing for their big finale, a distant star is shedding its outer…

3 hours ago

Here’s What We Know About Earth’s Temporary Mini-Moon

For a little over a month now, the Earth has been joined by a new…

5 hours ago

New Study Suggests Black Holes Get their “Hair” from their Mothers

Despite decades of study, black holes are still one of the most puzzling objects in…

6 hours ago

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

6 hours ago

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

11 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

13 hours ago