Categories: Astronomy

Mapquesting the Solar System

Map generators like Mapquest and Yahoo! Maps have bailed me out quite a few times, helping me get where I needed to go. So imagine in the future, navigating on other bodies in our solar system and having the ability to find landmarks and destinations to point you in the right direction. This type of technology is now under development and could create three-dimensional “super roadmaps” of other planets and moons. In addition it could also provide robots, astronauts and engineers details about atmospheric composition, biohazards, wind speed and temperature, and could help land future spacecraft and more effectively navigate roving cameras across a Martian or lunar terrain.

The Rochester Institute of Technology’s Rochester Imaging Detector Laboratory (RIDL), in collaboration with Massachusetts Institute of Technology’s Lincoln Laboratory are developing a new type of detector that uses LIDAR (LIght Detection and Ranging), a technique similar to radar, but which uses light instead of radio waves to measure distances.

This is a new generation of high resolution, low power consuming optical/ultraviolet imaging LIDAR detectors that will significantly extend NASA’s science capabilities for planetary applications by providing 3-D location information for planetary surfaces and a wider range of coverage than the single-pixel detectors currently combined with LIDAR.

The LIDAR imaging detector will be able to distinguish topographical details that differ in height by as little as one centimeter.

“The imaging LIDAR detector could become a workhorse for a wide range of NASA missions,” says Donald Figer, director of the RIDL. “You can have your pixel correspond to a few feet by a few feet spatial resolution instead of kilometer by kilometer,” Figer says. “And now you can take LIDAR pictures at fine resolutions and build up a map in hours instead of taking years at comparable resolution with a single image.”

The device will consist of a 2-D continuous array of light sensing elements connected to high-speed circuits. The $547,000 NASA-funded program also includes a potential $589,000 phase for fabrication and testing.

LIDAR works by measuring the time it takes for light to travel from a laser beam to an object and back into a light detector. The new detector can be used to measure distance, speed and rotation. It will provide high-spatial resolution topography as well as measurements of planetary atmospheric properties: pressure, temperature, chemical composition and ground-layer properties. The device can also be used to probe the environments of comets, asteroids and moons to determine composition, physical processes and chemical variability.

The imaging LIDAR detector will be tested at RIDL in environments that mimic aspects of operations in NASA space missions.

Orginal News Source: EurekAlert

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

17 minutes ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

13 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

13 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

14 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

17 hours ago

Uranus is Getting Colder and Now We Know Why

Uranus is an oddball among the Solar System's planets. While most planets' axis of rotation…

20 hours ago