Categories: Astronomy

Mapquesting the Solar System

Map generators like Mapquest and Yahoo! Maps have bailed me out quite a few times, helping me get where I needed to go. So imagine in the future, navigating on other bodies in our solar system and having the ability to find landmarks and destinations to point you in the right direction. This type of technology is now under development and could create three-dimensional “super roadmaps” of other planets and moons. In addition it could also provide robots, astronauts and engineers details about atmospheric composition, biohazards, wind speed and temperature, and could help land future spacecraft and more effectively navigate roving cameras across a Martian or lunar terrain.

The Rochester Institute of Technology’s Rochester Imaging Detector Laboratory (RIDL), in collaboration with Massachusetts Institute of Technology’s Lincoln Laboratory are developing a new type of detector that uses LIDAR (LIght Detection and Ranging), a technique similar to radar, but which uses light instead of radio waves to measure distances.

This is a new generation of high resolution, low power consuming optical/ultraviolet imaging LIDAR detectors that will significantly extend NASA’s science capabilities for planetary applications by providing 3-D location information for planetary surfaces and a wider range of coverage than the single-pixel detectors currently combined with LIDAR.

The LIDAR imaging detector will be able to distinguish topographical details that differ in height by as little as one centimeter.

“The imaging LIDAR detector could become a workhorse for a wide range of NASA missions,” says Donald Figer, director of the RIDL. “You can have your pixel correspond to a few feet by a few feet spatial resolution instead of kilometer by kilometer,” Figer says. “And now you can take LIDAR pictures at fine resolutions and build up a map in hours instead of taking years at comparable resolution with a single image.”

The device will consist of a 2-D continuous array of light sensing elements connected to high-speed circuits. The $547,000 NASA-funded program also includes a potential $589,000 phase for fabrication and testing.

LIDAR works by measuring the time it takes for light to travel from a laser beam to an object and back into a light detector. The new detector can be used to measure distance, speed and rotation. It will provide high-spatial resolution topography as well as measurements of planetary atmospheric properties: pressure, temperature, chemical composition and ground-layer properties. The device can also be used to probe the environments of comets, asteroids and moons to determine composition, physical processes and chemical variability.

The imaging LIDAR detector will be tested at RIDL in environments that mimic aspects of operations in NASA space missions.

Orginal News Source: EurekAlert

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Flowing Martian Water was Protected by Sheets of Carbon Dioxide

Mars' ancient climate is one of our Solar System's most perplexing mysteries. The planet was…

10 hours ago

Japan Launches the First Wooden Satellite to Space

Space debris, which consists of pieces of spent rocket stages, satellites, and other objects launched…

11 hours ago

You Can Build a Home Radio Telescope to Detect Clouds of Hydrogen in the Milky Way

If I ask you to picture a radio telescope, you probably imagine a large dish…

14 hours ago

A Space Walking Robot Could Build a Giant Telescope in Space

The Hubble Space Telescope was carried to space inside the space shuttle Discovery and then…

2 days ago

New Report Details What Happened to the Arecibo Observatory

In 1963, the Arecibo Observatory became operational on the island of Puerto Rico. Measuring 305…

2 days ago

We Understand Rotating Black Holes Even Less Than We Thought

The theory of black holes has several mathematical oddities. Recent research shows our understanding of…

3 days ago