Categories: Earth Observation

Phytoplankton Bloom Erupts in the North Sea

Usually the North Sea conjures up cold and gloomy visions. But as the stunning image above shows, this isn’t always the case. ESA’s Envisat captured vast green swirls of phytoplankton bloom drifting in the North Sea currents on May 7th 2008; spring has most definitely sprung for the Scottish waters. But how is this bright green bloom produced? What has stirred up all this activity? It seems that for a short time, the lush green landscape of Fife is matched by the sea-faring plankton off the UK coast…

This vivid green bloom was created by a type of plankton called phytoplankton. The microscopic plant floats near the surface of large bodies of water where sunlight is plentiful. Like any land-based plant, phytoplankton requires photosynthesis to survive. Other types of plankton include zooplankton (microscopic creatures) and bacterioplankton (water-borne bacteria) survive by feeding off other plankton varieties. The plant variety of plankton, phytoplankton, is well known to produce blooms when nutrients on the marine environment increase, boosting phytoplankton population. It would seem that the water off the Scotland coast has become particularly nutrient rich, with plenty of sunlight, creating magnificent displays observable from orbit.

This particular bloom was captured by the Medium Resolution Imaging Spectrometer (MERIS) instrument on board the ESA’s Envisat operating at a full spatial resolution of 300m (i.e. features of 300m can be resolved). The green hue is from the chlorophyll (essential for photosynthesis) contained within each phytoplankton cell. Depending on the phytoplankton species, it’s possible that there are hundreds to thousands of cells per millilitre of sea water.

Phytoplankton is very important when considering the concentrations of carbon dioxide in the atmosphere and their density in the worlds oceans are modelled in simulations of future climate change. During photosynthesis, they absorb carbon dioxide (and generate oxygen), so they form a highly influential carbon sink.

Source: ESA Picture of the Day

Ian O'Neill

[Follow me on Twitter (@astroengine)] [Check out my space blog: Astroengine.com] [Check out my radio show: Astroengine Live!] Hello! My name is Ian O'Neill and I've been writing for the Universe Today since December 2007. I am a solar physics doctor, but my space interests are wide-ranging. Since becoming a science writer I have been drawn to the more extreme astrophysics concepts (like black hole dynamics), high energy physics (getting excited about the LHC!) and general space colonization efforts. I am also heavily involved with the Mars Homestead project (run by the Mars Foundation), an international organization to advance our settlement concepts on Mars. I also run my own space physics blog: Astroengine.com, be sure to check it out!

Recent Posts

A New Way to Detect Daisy Worlds

The Daisy World model describes a hypothetical planet that self-regulates, maintaining a delicate balance involving…

46 minutes ago

Two Supermassive Black Holes on the Verge of a Merger

Researchers have been keeping an eye on the center of a galaxy located about a…

3 hours ago

Interferometry Will Be the Key to Resolving Exoplanets

When it comes to telescopes, bigger really is better. A larger telescope brings with it…

5 hours ago

A New Mission To Pluto Could Answer the Questions Raised by New Horizons

Pluto may have been downgraded from full-planet status, but that doesn't mean it doesn't hold…

5 hours ago

Astronomers Map the Shape of a Black Hole's Corona for the First Time

The Sun is surrounded by the corona, a region of superheated gas above the surface…

6 hours ago

Yes, Virginia, The Universe is Still Making Galaxies

Despite the fact that our universe is old, cold, and well past its prime, it's…

8 hours ago